Database
REAL AND COMPLEX NUMBERS
Words over a set
Singleton words
s1eq
Next ⟩
s1eqd
Metamath Proof Explorer
Ascii
Unicode
Theorem
s1eq
Description:
Equality theorem for a singleton word.
(Contributed by
Mario Carneiro
, 26-Feb-2016)
Ref
Expression
Assertion
s1eq
⊢
A
=
B
→
〈“
A
”〉
=
〈“
B
”〉
Proof
Step
Hyp
Ref
Expression
1
fveq2
⊢
A
=
B
→
I
⁡
A
=
I
⁡
B
2
1
opeq2d
⊢
A
=
B
→
0
I
⁡
A
=
0
I
⁡
B
3
2
sneqd
⊢
A
=
B
→
0
I
⁡
A
=
0
I
⁡
B
4
df-s1
⊢
〈“
A
”〉
=
0
I
⁡
A
5
df-s1
⊢
〈“
B
”〉
=
0
I
⁡
B
6
3
4
5
3eqtr4g
⊢
A
=
B
→
〈“
A
”〉
=
〈“
B
”〉