Metamath Proof Explorer


Theorem s1eq

Description: Equality theorem for a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016)

Ref Expression
Assertion s1eq A = B ⟨“ A ”⟩ = ⟨“ B ”⟩

Proof

Step Hyp Ref Expression
1 fveq2 A = B I A = I B
2 1 opeq2d A = B 0 I A = 0 I B
3 2 sneqd A = B 0 I A = 0 I B
4 df-s1 ⟨“ A ”⟩ = 0 I A
5 df-s1 ⟨“ B ”⟩ = 0 I B
6 3 4 5 3eqtr4g A = B ⟨“ A ”⟩ = ⟨“ B ”⟩