Database
REAL AND COMPLEX NUMBERS
Words over a set
Singleton words
s1eqd
Next ⟩
s1cl
Metamath Proof Explorer
Ascii
Unicode
Theorem
s1eqd
Description:
Equality theorem for a singleton word.
(Contributed by
Mario Carneiro
, 26-Feb-2016)
Ref
Expression
Hypothesis
s1eqd.1
⊢
φ
→
A
=
B
Assertion
s1eqd
⊢
φ
→
〈“
A
”〉
=
〈“
B
”〉
Proof
Step
Hyp
Ref
Expression
1
s1eqd.1
⊢
φ
→
A
=
B
2
s1eq
⊢
A
=
B
→
〈“
A
”〉
=
〈“
B
”〉
3
1
2
syl
⊢
φ
→
〈“
A
”〉
=
〈“
B
”〉