Metamath Proof Explorer


Theorem s1f1

Description: Conditions for a length 1 string to be a one-to-one function. (Contributed by Thierry Arnoux, 11-Dec-2023)

Ref Expression
Hypothesis s1f1.1 φ I D
Assertion s1f1 φ ⟨“ I ”⟩ : dom ⟨“ I ”⟩ 1-1 D

Proof

Step Hyp Ref Expression
1 s1f1.1 φ I D
2 0nn0 0 0
3 2 a1i φ 0 0
4 f1osng 0 0 I D 0 I : 0 1-1 onto I
5 3 1 4 syl2anc φ 0 I : 0 1-1 onto I
6 f1of1 0 I : 0 1-1 onto I 0 I : 0 1-1 I
7 5 6 syl φ 0 I : 0 1-1 I
8 1 snssd φ I D
9 f1ss 0 I : 0 1-1 I I D 0 I : 0 1-1 D
10 7 8 9 syl2anc φ 0 I : 0 1-1 D
11 s1val I D ⟨“ I ”⟩ = 0 I
12 1 11 syl φ ⟨“ I ”⟩ = 0 I
13 s1dm dom ⟨“ I ”⟩ = 0
14 13 a1i φ dom ⟨“ I ”⟩ = 0
15 eqidd φ D = D
16 12 14 15 f1eq123d φ ⟨“ I ”⟩ : dom ⟨“ I ”⟩ 1-1 D 0 I : 0 1-1 D
17 10 16 mpbird φ ⟨“ I ”⟩ : dom ⟨“ I ”⟩ 1-1 D