Metamath Proof Explorer


Theorem s1fv

Description: Sole symbol of a singleton word. (Contributed by Stefan O'Rear, 15-Aug-2015) (Revised by Mario Carneiro, 26-Feb-2016)

Ref Expression
Assertion s1fv A B ⟨“ A ”⟩ 0 = A

Proof

Step Hyp Ref Expression
1 s1val A B ⟨“ A ”⟩ = 0 A
2 1 fveq1d A B ⟨“ A ”⟩ 0 = 0 A 0
3 0nn0 0 0
4 fvsng 0 0 A B 0 A 0 = A
5 3 4 mpan A B 0 A 0 = A
6 2 5 eqtrd A B ⟨“ A ”⟩ 0 = A