Metamath Proof Explorer


Theorem s1len

Description: Length of a singleton word. (Contributed by Stefan O'Rear, 15-Aug-2015) (Revised by Mario Carneiro, 26-Feb-2016)

Ref Expression
Assertion s1len ⟨“ A ”⟩ = 1

Proof

Step Hyp Ref Expression
1 df-s1 ⟨“ A ”⟩ = 0 I A
2 1 fveq2i ⟨“ A ”⟩ = 0 I A
3 opex 0 I A V
4 hashsng 0 I A V 0 I A = 1
5 3 4 ax-mp 0 I A = 1
6 2 5 eqtri ⟨“ A ”⟩ = 1