Metamath Proof Explorer


Theorem s1prc

Description: Value of a singleton word if the symbol is a proper class. (Contributed by AV, 26-Mar-2022)

Ref Expression
Assertion s1prc ¬ A V ⟨“ A ”⟩ = ⟨“ ”⟩

Proof

Step Hyp Ref Expression
1 ids1 ⟨“ A ”⟩ = ⟨“ I A ”⟩
2 fvprc ¬ A V I A =
3 2 s1eqd ¬ A V ⟨“ I A ”⟩ = ⟨“ ”⟩
4 1 3 eqtrid ¬ A V ⟨“ A ”⟩ = ⟨“ ”⟩