Database
REAL AND COMPLEX NUMBERS
Words over a set
Singleton words
s1rn
Next ⟩
s1eq
Metamath Proof Explorer
Ascii
Unicode
Theorem
s1rn
Description:
The range of a singleton word.
(Contributed by
Mario Carneiro
, 18-Jul-2016)
Ref
Expression
Assertion
s1rn
⊢
A
∈
V
→
ran
⁡
〈“
A
”〉
=
A
Proof
Step
Hyp
Ref
Expression
1
s1val
⊢
A
∈
V
→
〈“
A
”〉
=
0
A
2
1
rneqd
⊢
A
∈
V
→
ran
⁡
〈“
A
”〉
=
ran
⁡
0
A
3
c0ex
⊢
0
∈
V
4
3
rnsnop
⊢
ran
⁡
0
A
=
A
5
2
4
eqtrdi
⊢
A
∈
V
→
ran
⁡
〈“
A
”〉
=
A