Metamath Proof Explorer


Theorem s1rn

Description: The range of a singleton word. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Assertion s1rn A V ran ⟨“ A ”⟩ = A

Proof

Step Hyp Ref Expression
1 s1val A V ⟨“ A ”⟩ = 0 A
2 1 rneqd A V ran ⟨“ A ”⟩ = ran 0 A
3 c0ex 0 V
4 3 rnsnop ran 0 A = A
5 2 4 eqtrdi A V ran ⟨“ A ”⟩ = A