Metamath Proof Explorer


Theorem s1s6

Description: Concatenation of fixed length strings. (Contributed by Mario Carneiro, 26-Feb-2016)

Ref Expression
Assertion s1s6 ⟨“ ABCDEFG ”⟩ = ⟨“ A ”⟩ ++ ⟨“ BCDEFG ”⟩

Proof

Step Hyp Ref Expression
1 df-s6 ⟨“ BCDEFG ”⟩ = ⟨“ BCDEF ”⟩ ++ ⟨“ G ”⟩
2 s1cli ⟨“ A ”⟩ Word V
3 s5cli ⟨“ BCDEF ”⟩ Word V
4 df-s7 ⟨“ ABCDEFG ”⟩ = ⟨“ ABCDEF ”⟩ ++ ⟨“ G ”⟩
5 s1s5 ⟨“ ABCDEF ”⟩ = ⟨“ A ”⟩ ++ ⟨“ BCDEF ”⟩
6 1 2 3 4 5 cats1cat ⟨“ ABCDEFG ”⟩ = ⟨“ A ”⟩ ++ ⟨“ BCDEFG ”⟩