Metamath Proof Explorer


Theorem s1s7

Description: Concatenation of fixed length strings. (Contributed by Mario Carneiro, 26-Feb-2016)

Ref Expression
Assertion s1s7 ⟨“ ABCDEFGH ”⟩ = ⟨“ A ”⟩ ++ ⟨“ BCDEFGH ”⟩

Proof

Step Hyp Ref Expression
1 df-s7 ⟨“ BCDEFGH ”⟩ = ⟨“ BCDEFG ”⟩ ++ ⟨“ H ”⟩
2 s1cli ⟨“ A ”⟩ Word V
3 s6cli ⟨“ BCDEFG ”⟩ Word V
4 df-s8 ⟨“ ABCDEFGH ”⟩ = ⟨“ ABCDEFG ”⟩ ++ ⟨“ H ”⟩
5 s1s6 ⟨“ ABCDEFG ”⟩ = ⟨“ A ”⟩ ++ ⟨“ BCDEFG ”⟩
6 1 2 3 4 5 cats1cat ⟨“ ABCDEFGH ”⟩ = ⟨“ A ”⟩ ++ ⟨“ BCDEFGH ”⟩