Metamath Proof Explorer


Theorem s1val

Description: Value of a singleton word. (Contributed by Stefan O'Rear, 15-Aug-2015) (Revised by Mario Carneiro, 26-Feb-2016)

Ref Expression
Assertion s1val A V ⟨“ A ”⟩ = 0 A

Proof

Step Hyp Ref Expression
1 df-s1 ⟨“ A ”⟩ = 0 I A
2 fvi A V I A = A
3 2 opeq2d A V 0 I A = 0 A
4 3 sneqd A V 0 I A = 0 A
5 1 4 eqtrid A V ⟨“ A ”⟩ = 0 A