Database
REAL AND COMPLEX NUMBERS
Words over a set
Longer string literals
s2cld
Next ⟩
s3cld
Metamath Proof Explorer
Ascii
Unicode
Theorem
s2cld
Description:
A doubleton word is a word.
(Contributed by
Mario Carneiro
, 27-Feb-2016)
Ref
Expression
Hypotheses
s2cld.1
⊢
φ
→
A
∈
X
s2cld.2
⊢
φ
→
B
∈
X
Assertion
s2cld
⊢
φ
→
〈“
A
B
”〉
∈
Word
X
Proof
Step
Hyp
Ref
Expression
1
s2cld.1
⊢
φ
→
A
∈
X
2
s2cld.2
⊢
φ
→
B
∈
X
3
df-s2
⊢
〈“
A
B
”〉
=
〈“
A
”〉
++
〈“
B
”〉
4
1
s1cld
⊢
φ
→
〈“
A
”〉
∈
Word
X
5
3
4
2
cats1cld
⊢
φ
→
〈“
A
B
”〉
∈
Word
X