Metamath Proof Explorer


Theorem s2cld

Description: A doubleton word is a word. (Contributed by Mario Carneiro, 27-Feb-2016)

Ref Expression
Hypotheses s2cld.1 φ A X
s2cld.2 φ B X
Assertion s2cld φ ⟨“ AB ”⟩ Word X

Proof

Step Hyp Ref Expression
1 s2cld.1 φ A X
2 s2cld.2 φ B X
3 df-s2 ⟨“ AB ”⟩ = ⟨“ A ”⟩ ++ ⟨“ B ”⟩
4 1 s1cld φ ⟨“ A ”⟩ Word X
5 3 4 2 cats1cld φ ⟨“ AB ”⟩ Word X