Metamath Proof Explorer


Theorem s2co

Description: Mapping a doubleton word by a function. (Contributed by Mario Carneiro, 27-Feb-2016)

Ref Expression
Hypotheses s2co.1 φ F : X Y
s2co.2 φ A X
s2co.3 φ B X
Assertion s2co φ F ⟨“ AB ”⟩ = ⟨“ F A F B ”⟩

Proof

Step Hyp Ref Expression
1 s2co.1 φ F : X Y
2 s2co.2 φ A X
3 s2co.3 φ B X
4 df-s2 ⟨“ AB ”⟩ = ⟨“ A ”⟩ ++ ⟨“ B ”⟩
5 2 s1cld φ ⟨“ A ”⟩ Word X
6 s1co A X F : X Y F ⟨“ A ”⟩ = ⟨“ F A ”⟩
7 2 1 6 syl2anc φ F ⟨“ A ”⟩ = ⟨“ F A ”⟩
8 df-s2 ⟨“ F A F B ”⟩ = ⟨“ F A ”⟩ ++ ⟨“ F B ”⟩
9 4 5 3 1 7 8 cats1co φ F ⟨“ AB ”⟩ = ⟨“ F A F B ”⟩