Metamath Proof Explorer


Theorem s3cld

Description: A length 3 string is a word. (Contributed by Mario Carneiro, 27-Feb-2016)

Ref Expression
Hypotheses s2cld.1 φ A X
s2cld.2 φ B X
s3cld.3 φ C X
Assertion s3cld φ ⟨“ ABC ”⟩ Word X

Proof

Step Hyp Ref Expression
1 s2cld.1 φ A X
2 s2cld.2 φ B X
3 s3cld.3 φ C X
4 df-s3 ⟨“ ABC ”⟩ = ⟨“ AB ”⟩ ++ ⟨“ C ”⟩
5 1 2 s2cld φ ⟨“ AB ”⟩ Word X
6 4 5 3 cats1cld φ ⟨“ ABC ”⟩ Word X