Metamath Proof Explorer


Theorem s3co

Description: Mapping a length 3 string by a function. (Contributed by Mario Carneiro, 27-Feb-2016)

Ref Expression
Hypotheses s2co.1 φ F : X Y
s2co.2 φ A X
s2co.3 φ B X
s3co.4 φ C X
Assertion s3co φ F ⟨“ ABC ”⟩ = ⟨“ F A F B F C ”⟩

Proof

Step Hyp Ref Expression
1 s2co.1 φ F : X Y
2 s2co.2 φ A X
3 s2co.3 φ B X
4 s3co.4 φ C X
5 df-s3 ⟨“ ABC ”⟩ = ⟨“ AB ”⟩ ++ ⟨“ C ”⟩
6 2 3 s2cld φ ⟨“ AB ”⟩ Word X
7 1 2 3 s2co φ F ⟨“ AB ”⟩ = ⟨“ F A F B ”⟩
8 df-s3 ⟨“ F A F B F C ”⟩ = ⟨“ F A F B ”⟩ ++ ⟨“ F C ”⟩
9 5 6 4 1 7 8 cats1co φ F ⟨“ ABC ”⟩ = ⟨“ F A F B F C ”⟩