Database
REAL AND COMPLEX NUMBERS
Words over a set
Longer string literals
s3co
Next ⟩
s0s1
Metamath Proof Explorer
Ascii
Unicode
Theorem
s3co
Description:
Mapping a length 3 string by a function.
(Contributed by
Mario Carneiro
, 27-Feb-2016)
Ref
Expression
Hypotheses
s2co.1
⊢
φ
→
F
:
X
⟶
Y
s2co.2
⊢
φ
→
A
∈
X
s2co.3
⊢
φ
→
B
∈
X
s3co.4
⊢
φ
→
C
∈
X
Assertion
s3co
⊢
φ
→
F
∘
〈“
A
B
C
”〉
=
〈“
F
⁡
A
F
⁡
B
F
⁡
C
”〉
Proof
Step
Hyp
Ref
Expression
1
s2co.1
⊢
φ
→
F
:
X
⟶
Y
2
s2co.2
⊢
φ
→
A
∈
X
3
s2co.3
⊢
φ
→
B
∈
X
4
s3co.4
⊢
φ
→
C
∈
X
5
df-s3
⊢
〈“
A
B
C
”〉
=
〈“
A
B
”〉
++
〈“
C
”〉
6
2
3
s2cld
⊢
φ
→
〈“
A
B
”〉
∈
Word
X
7
1
2
3
s2co
⊢
φ
→
F
∘
〈“
A
B
”〉
=
〈“
F
⁡
A
F
⁡
B
”〉
8
df-s3
⊢
〈“
F
⁡
A
F
⁡
B
F
⁡
C
”〉
=
〈“
F
⁡
A
F
⁡
B
”〉
++
〈“
F
⁡
C
”〉
9
5
6
4
1
7
8
cats1co
⊢
φ
→
F
∘
〈“
A
B
C
”〉
=
〈“
F
⁡
A
F
⁡
B
F
⁡
C
”〉