Metamath Proof Explorer


Theorem s3eq2

Description: Equality theorem for a length 3 word for the second symbol. (Contributed by AV, 4-Jan-2022)

Ref Expression
Assertion s3eq2 B = D ⟨“ ABC ”⟩ = ⟨“ ADC ”⟩

Proof

Step Hyp Ref Expression
1 eqidd B = D A = A
2 id B = D B = D
3 eqidd B = D C = C
4 1 2 3 s3eqd B = D ⟨“ ABC ”⟩ = ⟨“ ADC ”⟩