Step |
Hyp |
Ref |
Expression |
1 |
|
s3f1.i |
|
2 |
|
s3f1.j |
|
3 |
|
s3f1.k |
|
4 |
|
s3f1.1 |
|
5 |
|
s3f1.2 |
|
6 |
|
s3f1.3 |
|
7 |
1 2 3
|
s3cld |
|
8 |
|
wrdf |
|
9 |
7 8
|
syl |
|
10 |
9
|
ffdmd |
|
11 |
|
simplr |
|
12 |
|
simpr |
|
13 |
11 12
|
eqtr4d |
|
14 |
|
simpllr |
|
15 |
|
simpr |
|
16 |
15
|
fveq2d |
|
17 |
|
s3fv0 |
|
18 |
1 17
|
syl |
|
19 |
18
|
ad4antr |
|
20 |
16 19
|
eqtrd |
|
21 |
20
|
adantr |
|
22 |
|
simpr |
|
23 |
22
|
fveq2d |
|
24 |
|
s3fv1 |
|
25 |
2 24
|
syl |
|
26 |
25
|
ad4antr |
|
27 |
23 26
|
eqtrd |
|
28 |
27
|
adantlr |
|
29 |
14 21 28
|
3eqtr3d |
|
30 |
4
|
ad5antr |
|
31 |
29 30
|
pm2.21ddne |
|
32 |
|
simpllr |
|
33 |
20
|
adantr |
|
34 |
|
simpr |
|
35 |
34
|
fveq2d |
|
36 |
|
s3fv2 |
|
37 |
3 36
|
syl |
|
38 |
37
|
ad4antr |
|
39 |
35 38
|
eqtrd |
|
40 |
39
|
adantlr |
|
41 |
32 33 40
|
3eqtr3rd |
|
42 |
6
|
ad5antr |
|
43 |
41 42
|
pm2.21ddne |
|
44 |
|
wrddm |
|
45 |
7 44
|
syl |
|
46 |
|
s3len |
|
47 |
46
|
oveq2i |
|
48 |
|
fzo0to3tp |
|
49 |
47 48
|
eqtri |
|
50 |
45 49
|
eqtrdi |
|
51 |
50
|
eleq2d |
|
52 |
51
|
biimpa |
|
53 |
|
vex |
|
54 |
53
|
eltp |
|
55 |
52 54
|
sylib |
|
56 |
55
|
adantlr |
|
57 |
56
|
ad2antrr |
|
58 |
13 31 43 57
|
mpjao3dan |
|
59 |
|
simpllr |
|
60 |
|
simpr |
|
61 |
60
|
fveq2d |
|
62 |
25
|
ad4antr |
|
63 |
61 62
|
eqtrd |
|
64 |
63
|
adantr |
|
65 |
|
simpr |
|
66 |
65
|
fveq2d |
|
67 |
18
|
ad4antr |
|
68 |
66 67
|
eqtrd |
|
69 |
68
|
adantlr |
|
70 |
59 64 69
|
3eqtr3rd |
|
71 |
4
|
ad5antr |
|
72 |
70 71
|
pm2.21ddne |
|
73 |
|
simplr |
|
74 |
|
simpr |
|
75 |
73 74
|
eqtr4d |
|
76 |
|
simpllr |
|
77 |
63
|
adantr |
|
78 |
39
|
adantlr |
|
79 |
76 77 78
|
3eqtr3d |
|
80 |
5
|
ad5antr |
|
81 |
79 80
|
pm2.21ddne |
|
82 |
56
|
ad2antrr |
|
83 |
72 75 81 82
|
mpjao3dan |
|
84 |
|
simpllr |
|
85 |
|
simpr |
|
86 |
85
|
fveq2d |
|
87 |
37
|
ad4antr |
|
88 |
86 87
|
eqtrd |
|
89 |
88
|
adantr |
|
90 |
68
|
adantlr |
|
91 |
84 89 90
|
3eqtr3d |
|
92 |
6
|
ad5antr |
|
93 |
91 92
|
pm2.21ddne |
|
94 |
|
simpllr |
|
95 |
88
|
adantr |
|
96 |
27
|
adantlr |
|
97 |
94 95 96
|
3eqtr3rd |
|
98 |
5
|
ad5antr |
|
99 |
97 98
|
pm2.21ddne |
|
100 |
|
simplr |
|
101 |
|
simpr |
|
102 |
100 101
|
eqtr4d |
|
103 |
56
|
ad2antrr |
|
104 |
93 99 102 103
|
mpjao3dan |
|
105 |
50
|
eleq2d |
|
106 |
105
|
biimpa |
|
107 |
|
vex |
|
108 |
107
|
eltp |
|
109 |
106 108
|
sylib |
|
110 |
109
|
ad2antrr |
|
111 |
58 83 104 110
|
mpjao3dan |
|
112 |
111
|
ex |
|
113 |
112
|
anasss |
|
114 |
113
|
ralrimivva |
|
115 |
|
dff13 |
|
116 |
10 114 115
|
sylanbrc |
|