Metamath Proof Explorer


Theorem s3fn

Description: A length 3 word is a function with a triple as domain. (Contributed by Alexander van der Vekens, 5-Dec-2017) (Revised by AV, 23-Jan-2021)

Ref Expression
Assertion s3fn A V B V C V ⟨“ ABC ”⟩ Fn 0 1 2

Proof

Step Hyp Ref Expression
1 s3cl A V B V C V ⟨“ ABC ”⟩ Word V
2 wrdfn ⟨“ ABC ”⟩ Word V ⟨“ ABC ”⟩ Fn 0 ..^ ⟨“ ABC ”⟩
3 1 2 syl A V B V C V ⟨“ ABC ”⟩ Fn 0 ..^ ⟨“ ABC ”⟩
4 s3len ⟨“ ABC ”⟩ = 3
5 4 oveq2i 0 ..^ ⟨“ ABC ”⟩ = 0 ..^ 3
6 fzo0to3tp 0 ..^ 3 = 0 1 2
7 5 6 eqtr2i 0 1 2 = 0 ..^ ⟨“ ABC ”⟩
8 7 fneq2i ⟨“ ABC ”⟩ Fn 0 1 2 ⟨“ ABC ”⟩ Fn 0 ..^ ⟨“ ABC ”⟩
9 3 8 sylibr A V B V C V ⟨“ ABC ”⟩ Fn 0 1 2