Step |
Hyp |
Ref |
Expression |
1 |
|
orc |
|
2 |
1
|
a1d |
|
3 |
|
eliun |
|
4 |
|
velsn |
|
5 |
|
eqeq1 |
|
6 |
5
|
adantl |
|
7 |
|
s3cli |
|
8 |
|
elex |
|
9 |
|
elex |
|
10 |
9
|
adantl |
|
11 |
8 10
|
anim12ci |
|
12 |
|
elex |
|
13 |
12
|
adantl |
|
14 |
11 13
|
anim12i |
|
15 |
|
df-3an |
|
16 |
14 15
|
sylibr |
|
17 |
|
eqwrds3 |
|
18 |
7 16 17
|
sylancr |
|
19 |
|
s3fv0 |
|
20 |
19
|
elv |
|
21 |
|
simp1 |
|
22 |
20 21
|
eqtr3id |
|
23 |
22
|
adantl |
|
24 |
18 23
|
syl6bi |
|
25 |
24
|
adantr |
|
26 |
6 25
|
sylbid |
|
27 |
26
|
ancoms |
|
28 |
27
|
con3d |
|
29 |
28
|
exp32 |
|
30 |
29
|
com14 |
|
31 |
30
|
imp |
|
32 |
31
|
expd |
|
33 |
32
|
com34 |
|
34 |
33
|
imp |
|
35 |
4 34
|
syl5bi |
|
36 |
35
|
imp |
|
37 |
36
|
imp |
|
38 |
|
velsn |
|
39 |
37 38
|
sylnibr |
|
40 |
39
|
nrexdv |
|
41 |
|
eliun |
|
42 |
40 41
|
sylnibr |
|
43 |
42
|
rexlimdva2 |
|
44 |
3 43
|
syl5bi |
|
45 |
44
|
ralrimiv |
|
46 |
|
eqidd |
|
47 |
|
eqidd |
|
48 |
|
id |
|
49 |
46 47 48
|
s3eqd |
|
50 |
49
|
sneqd |
|
51 |
50
|
cbviunv |
|
52 |
51
|
eleq2i |
|
53 |
52
|
notbii |
|
54 |
53
|
ralbii |
|
55 |
45 54
|
sylibr |
|
56 |
|
disj |
|
57 |
55 56
|
sylibr |
|
58 |
57
|
olcd |
|
59 |
58
|
ex |
|
60 |
2 59
|
pm2.61i |
|
61 |
60
|
ralrimivva |
|
62 |
|
sneq |
|
63 |
62
|
difeq2d |
|
64 |
|
id |
|
65 |
|
eqidd |
|
66 |
|
eqidd |
|
67 |
64 65 66
|
s3eqd |
|
68 |
67
|
sneqd |
|
69 |
63 68
|
disjiunb |
|
70 |
61 69
|
sylibr |
|