| Step |
Hyp |
Ref |
Expression |
| 1 |
|
orc |
|
| 2 |
1
|
a1d |
|
| 3 |
|
eliun |
|
| 4 |
|
velsn |
|
| 5 |
|
eqeq1 |
|
| 6 |
5
|
adantl |
|
| 7 |
|
s3cli |
|
| 8 |
|
elex |
|
| 9 |
|
elex |
|
| 10 |
9
|
adantl |
|
| 11 |
8 10
|
anim12ci |
|
| 12 |
|
elex |
|
| 13 |
12
|
adantl |
|
| 14 |
11 13
|
anim12i |
|
| 15 |
|
df-3an |
|
| 16 |
14 15
|
sylibr |
|
| 17 |
|
eqwrds3 |
|
| 18 |
7 16 17
|
sylancr |
|
| 19 |
|
s3fv0 |
|
| 20 |
19
|
elv |
|
| 21 |
|
simp1 |
|
| 22 |
20 21
|
eqtr3id |
|
| 23 |
22
|
adantl |
|
| 24 |
18 23
|
biimtrdi |
|
| 25 |
24
|
adantr |
|
| 26 |
6 25
|
sylbid |
|
| 27 |
26
|
ancoms |
|
| 28 |
27
|
con3d |
|
| 29 |
28
|
exp32 |
|
| 30 |
29
|
com14 |
|
| 31 |
30
|
imp |
|
| 32 |
31
|
expd |
|
| 33 |
32
|
com34 |
|
| 34 |
33
|
imp |
|
| 35 |
4 34
|
biimtrid |
|
| 36 |
35
|
imp |
|
| 37 |
36
|
imp |
|
| 38 |
|
velsn |
|
| 39 |
37 38
|
sylnibr |
|
| 40 |
39
|
nrexdv |
|
| 41 |
|
eliun |
|
| 42 |
40 41
|
sylnibr |
|
| 43 |
42
|
rexlimdva2 |
|
| 44 |
3 43
|
biimtrid |
|
| 45 |
44
|
ralrimiv |
|
| 46 |
|
eqidd |
|
| 47 |
|
eqidd |
|
| 48 |
|
id |
|
| 49 |
46 47 48
|
s3eqd |
|
| 50 |
49
|
sneqd |
|
| 51 |
50
|
cbviunv |
|
| 52 |
51
|
eleq2i |
|
| 53 |
52
|
notbii |
|
| 54 |
53
|
ralbii |
|
| 55 |
45 54
|
sylibr |
|
| 56 |
|
disj |
|
| 57 |
55 56
|
sylibr |
|
| 58 |
57
|
olcd |
|
| 59 |
58
|
ex |
|
| 60 |
2 59
|
pm2.61i |
|
| 61 |
60
|
ralrimivva |
|
| 62 |
|
sneq |
|
| 63 |
62
|
difeq2d |
|
| 64 |
|
id |
|
| 65 |
|
eqidd |
|
| 66 |
|
eqidd |
|
| 67 |
64 65 66
|
s3eqd |
|
| 68 |
67
|
sneqd |
|
| 69 |
63 68
|
disjiunb |
|
| 70 |
61 69
|
sylibr |
|