Metamath Proof Explorer


Theorem s4cld

Description: A length 4 string is a word. (Contributed by Mario Carneiro, 27-Feb-2016)

Ref Expression
Hypotheses s2cld.1 φ A X
s2cld.2 φ B X
s3cld.3 φ C X
s4cld.4 φ D X
Assertion s4cld φ ⟨“ ABCD ”⟩ Word X

Proof

Step Hyp Ref Expression
1 s2cld.1 φ A X
2 s2cld.2 φ B X
3 s3cld.3 φ C X
4 s4cld.4 φ D X
5 df-s4 ⟨“ ABCD ”⟩ = ⟨“ ABC ”⟩ ++ ⟨“ D ”⟩
6 1 2 3 s3cld φ ⟨“ ABC ”⟩ Word X
7 5 6 4 cats1cld φ ⟨“ ABCD ”⟩ Word X