Metamath Proof Explorer


Theorem s4dom

Description: The domain of a length 4 word is the union of two (disjunct) pairs. (Contributed by Alexander van der Vekens, 15-Aug-2017)

Ref Expression
Assertion s4dom A S B S C S D S E = ⟨“ ABCD ”⟩ dom E = 0 1 2 3

Proof

Step Hyp Ref Expression
1 dmeq E = ⟨“ ABCD ”⟩ dom E = dom ⟨“ ABCD ”⟩
2 s4prop A S B S C S D S ⟨“ ABCD ”⟩ = 0 A 1 B 2 C 3 D
3 2 dmeqd A S B S C S D S dom ⟨“ ABCD ”⟩ = dom 0 A 1 B 2 C 3 D
4 dmun dom 0 A 1 B 2 C 3 D = dom 0 A 1 B dom 2 C 3 D
5 dmpropg A S B S dom 0 A 1 B = 0 1
6 5 adantr A S B S C S D S dom 0 A 1 B = 0 1
7 dmpropg C S D S dom 2 C 3 D = 2 3
8 7 adantl A S B S C S D S dom 2 C 3 D = 2 3
9 6 8 uneq12d A S B S C S D S dom 0 A 1 B dom 2 C 3 D = 0 1 2 3
10 4 9 eqtrid A S B S C S D S dom 0 A 1 B 2 C 3 D = 0 1 2 3
11 3 10 eqtrd A S B S C S D S dom ⟨“ ABCD ”⟩ = 0 1 2 3
12 1 11 sylan9eqr A S B S C S D S E = ⟨“ ABCD ”⟩ dom E = 0 1 2 3
13 12 ex A S B S C S D S E = ⟨“ ABCD ”⟩ dom E = 0 1 2 3