Metamath Proof Explorer


Theorem s5cld

Description: A length 5 string is a word. (Contributed by Mario Carneiro, 27-Feb-2016)

Ref Expression
Hypotheses s2cld.1 φ A X
s2cld.2 φ B X
s3cld.3 φ C X
s4cld.4 φ D X
s5cld.5 φ E X
Assertion s5cld φ ⟨“ ABCDE ”⟩ Word X

Proof

Step Hyp Ref Expression
1 s2cld.1 φ A X
2 s2cld.2 φ B X
3 s3cld.3 φ C X
4 s4cld.4 φ D X
5 s5cld.5 φ E X
6 df-s5 ⟨“ ABCDE ”⟩ = ⟨“ ABCD ”⟩ ++ ⟨“ E ”⟩
7 1 2 3 4 s4cld φ ⟨“ ABCD ”⟩ Word X
8 6 7 5 cats1cld φ ⟨“ ABCDE ”⟩ Word X