Metamath Proof Explorer


Theorem s6cld

Description: A length 6 string is a word. (Contributed by Mario Carneiro, 27-Feb-2016)

Ref Expression
Hypotheses s2cld.1 φ A X
s2cld.2 φ B X
s3cld.3 φ C X
s4cld.4 φ D X
s5cld.5 φ E X
s6cld.6 φ F X
Assertion s6cld φ ⟨“ ABCDEF ”⟩ Word X

Proof

Step Hyp Ref Expression
1 s2cld.1 φ A X
2 s2cld.2 φ B X
3 s3cld.3 φ C X
4 s4cld.4 φ D X
5 s5cld.5 φ E X
6 s6cld.6 φ F X
7 df-s6 ⟨“ ABCDEF ”⟩ = ⟨“ ABCDE ”⟩ ++ ⟨“ F ”⟩
8 1 2 3 4 5 s5cld φ ⟨“ ABCDE ”⟩ Word X
9 7 8 6 cats1cld φ ⟨“ ABCDEF ”⟩ Word X