Metamath Proof Explorer


Theorem s6eqd

Description: Equality theorem for a length 6 word. (Contributed by Mario Carneiro, 27-Feb-2016)

Ref Expression
Hypotheses s2eqd.1 φ A = N
s2eqd.2 φ B = O
s3eqd.3 φ C = P
s4eqd.4 φ D = Q
s5eqd.5 φ E = R
s6eqd.6 φ F = S
Assertion s6eqd φ ⟨“ ABCDEF ”⟩ = ⟨“ NOPQRS ”⟩

Proof

Step Hyp Ref Expression
1 s2eqd.1 φ A = N
2 s2eqd.2 φ B = O
3 s3eqd.3 φ C = P
4 s4eqd.4 φ D = Q
5 s5eqd.5 φ E = R
6 s6eqd.6 φ F = S
7 1 2 3 4 5 s5eqd φ ⟨“ ABCDE ”⟩ = ⟨“ NOPQR ”⟩
8 6 s1eqd φ ⟨“ F ”⟩ = ⟨“ S ”⟩
9 7 8 oveq12d φ ⟨“ ABCDE ”⟩ ++ ⟨“ F ”⟩ = ⟨“ NOPQR ”⟩ ++ ⟨“ S ”⟩
10 df-s6 ⟨“ ABCDEF ”⟩ = ⟨“ ABCDE ”⟩ ++ ⟨“ F ”⟩
11 df-s6 ⟨“ NOPQRS ”⟩ = ⟨“ NOPQR ”⟩ ++ ⟨“ S ”⟩
12 9 10 11 3eqtr4g φ ⟨“ ABCDEF ”⟩ = ⟨“ NOPQRS ”⟩