Metamath Proof Explorer


Theorem s7cld

Description: A length 7 string is a word. (Contributed by Mario Carneiro, 27-Feb-2016)

Ref Expression
Hypotheses s2cld.1 φ A X
s2cld.2 φ B X
s3cld.3 φ C X
s4cld.4 φ D X
s5cld.5 φ E X
s6cld.6 φ F X
s7cld.7 φ G X
Assertion s7cld φ ⟨“ ABCDEFG ”⟩ Word X

Proof

Step Hyp Ref Expression
1 s2cld.1 φ A X
2 s2cld.2 φ B X
3 s3cld.3 φ C X
4 s4cld.4 φ D X
5 s5cld.5 φ E X
6 s6cld.6 φ F X
7 s7cld.7 φ G X
8 df-s7 ⟨“ ABCDEFG ”⟩ = ⟨“ ABCDEF ”⟩ ++ ⟨“ G ”⟩
9 1 2 3 4 5 6 s6cld φ ⟨“ ABCDEF ”⟩ Word X
10 8 9 7 cats1cld φ ⟨“ ABCDEFG ”⟩ Word X