Metamath Proof Explorer


Theorem s8cld

Description: A length 7 string is a word. (Contributed by Mario Carneiro, 27-Feb-2016)

Ref Expression
Hypotheses s2cld.1 φ A X
s2cld.2 φ B X
s3cld.3 φ C X
s4cld.4 φ D X
s5cld.5 φ E X
s6cld.6 φ F X
s7cld.7 φ G X
s8cld.8 φ H X
Assertion s8cld φ ⟨“ ABCDEFGH ”⟩ Word X

Proof

Step Hyp Ref Expression
1 s2cld.1 φ A X
2 s2cld.2 φ B X
3 s3cld.3 φ C X
4 s4cld.4 φ D X
5 s5cld.5 φ E X
6 s6cld.6 φ F X
7 s7cld.7 φ G X
8 s8cld.8 φ H X
9 df-s8 ⟨“ ABCDEFGH ”⟩ = ⟨“ ABCDEFG ”⟩ ++ ⟨“ H ”⟩
10 1 2 3 4 5 6 7 s7cld φ ⟨“ ABCDEFG ”⟩ Word X
11 9 10 8 cats1cld φ ⟨“ ABCDEFGH ”⟩ Word X