| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sadval.a |
|
| 2 |
|
sadval.b |
|
| 3 |
|
sadval.c |
|
| 4 |
|
sadcp1.n |
|
| 5 |
|
nn0uz |
|
| 6 |
4 5
|
eleqtrdi |
|
| 7 |
|
seqp1 |
|
| 8 |
6 7
|
syl |
|
| 9 |
3
|
fveq1i |
|
| 10 |
3
|
fveq1i |
|
| 11 |
10
|
oveq1i |
|
| 12 |
8 9 11
|
3eqtr4g |
|
| 13 |
|
peano2nn0 |
|
| 14 |
|
eqeq1 |
|
| 15 |
|
oveq1 |
|
| 16 |
14 15
|
ifbieq2d |
|
| 17 |
|
eqid |
|
| 18 |
|
0ex |
|
| 19 |
|
ovex |
|
| 20 |
18 19
|
ifex |
|
| 21 |
16 17 20
|
fvmpt |
|
| 22 |
4 13 21
|
3syl |
|
| 23 |
|
nn0p1nn |
|
| 24 |
4 23
|
syl |
|
| 25 |
24
|
nnne0d |
|
| 26 |
|
ifnefalse |
|
| 27 |
25 26
|
syl |
|
| 28 |
4
|
nn0cnd |
|
| 29 |
|
1cnd |
|
| 30 |
28 29
|
pncand |
|
| 31 |
22 27 30
|
3eqtrd |
|
| 32 |
31
|
oveq2d |
|
| 33 |
1 2 3
|
sadcf |
|
| 34 |
33 4
|
ffvelcdmd |
|
| 35 |
|
simpr |
|
| 36 |
35
|
eleq1d |
|
| 37 |
35
|
eleq1d |
|
| 38 |
|
simpl |
|
| 39 |
38
|
eleq2d |
|
| 40 |
36 37 39
|
cadbi123d |
|
| 41 |
40
|
ifbid |
|
| 42 |
|
biidd |
|
| 43 |
|
biidd |
|
| 44 |
|
eleq2w |
|
| 45 |
42 43 44
|
cadbi123d |
|
| 46 |
45
|
ifbid |
|
| 47 |
|
eleq1w |
|
| 48 |
|
eleq1w |
|
| 49 |
|
biidd |
|
| 50 |
47 48 49
|
cadbi123d |
|
| 51 |
50
|
ifbid |
|
| 52 |
46 51
|
cbvmpov |
|
| 53 |
|
1oex |
|
| 54 |
53 18
|
ifex |
|
| 55 |
41 52 54
|
ovmpoa |
|
| 56 |
34 4 55
|
syl2anc |
|
| 57 |
12 32 56
|
3eqtrd |
|
| 58 |
57
|
eleq2d |
|
| 59 |
|
noel |
|
| 60 |
|
iffalse |
|
| 61 |
60
|
eleq2d |
|
| 62 |
59 61
|
mtbiri |
|
| 63 |
62
|
con4i |
|
| 64 |
|
0lt1o |
|
| 65 |
|
iftrue |
|
| 66 |
64 65
|
eleqtrrid |
|
| 67 |
63 66
|
impbii |
|
| 68 |
58 67
|
bitrdi |
|