Metamath Proof Explorer


Theorem sategoelfvb

Description: Characterization of a valuation S of a simplified satisfaction predicate for a Godel-set of membership. (Contributed by AV, 5-Nov-2023)

Ref Expression
Hypothesis sategoelfvb.s E = M Sat A 𝑔 B
Assertion sategoelfvb M V A ω B ω S E S M ω S A S B

Proof

Step Hyp Ref Expression
1 sategoelfvb.s E = M Sat A 𝑔 B
2 ovexd A ω B ω A 𝑔 B V
3 simpl A ω B ω A ω
4 opeq1 a = A a b = A b
5 4 opeq2d a = A a b = A b
6 5 eqeq2d a = A A B = a b A B = A b
7 6 rexbidv a = A b ω A B = a b b ω A B = A b
8 7 adantl A ω B ω a = A b ω A B = a b b ω A B = A b
9 simpr A ω B ω B ω
10 opeq2 b = B A b = A B
11 10 opeq2d b = B A b = A B
12 11 eqeq2d b = B A B = A b A B = A B
13 12 adantl A ω B ω b = B A B = A b A B = A B
14 eqidd A ω B ω A B = A B
15 9 13 14 rspcedvd A ω B ω b ω A B = A b
16 3 8 15 rspcedvd A ω B ω a ω b ω A B = a b
17 goel A ω B ω A 𝑔 B = A B
18 goel a ω b ω a 𝑔 b = a b
19 17 18 eqeqan12d A ω B ω a ω b ω A 𝑔 B = a 𝑔 b A B = a b
20 19 2rexbidva A ω B ω a ω b ω A 𝑔 B = a 𝑔 b a ω b ω A B = a b
21 16 20 mpbird A ω B ω a ω b ω A 𝑔 B = a 𝑔 b
22 eqeq1 x = A 𝑔 B x = a 𝑔 b A 𝑔 B = a 𝑔 b
23 22 2rexbidv x = A 𝑔 B a ω b ω x = a 𝑔 b a ω b ω A 𝑔 B = a 𝑔 b
24 fmla0 Fmla = x V | a ω b ω x = a 𝑔 b
25 23 24 elrab2 A 𝑔 B Fmla A 𝑔 B V a ω b ω A 𝑔 B = a 𝑔 b
26 2 21 25 sylanbrc A ω B ω A 𝑔 B Fmla
27 satefvfmla0 M V A 𝑔 B Fmla M Sat A 𝑔 B = a M ω | a 1 st 2 nd A 𝑔 B a 2 nd 2 nd A 𝑔 B
28 26 27 sylan2 M V A ω B ω M Sat A 𝑔 B = a M ω | a 1 st 2 nd A 𝑔 B a 2 nd 2 nd A 𝑔 B
29 1 28 syl5eq M V A ω B ω E = a M ω | a 1 st 2 nd A 𝑔 B a 2 nd 2 nd A 𝑔 B
30 29 eleq2d M V A ω B ω S E S a M ω | a 1 st 2 nd A 𝑔 B a 2 nd 2 nd A 𝑔 B
31 fveq1 a = S a 1 st 2 nd A 𝑔 B = S 1 st 2 nd A 𝑔 B
32 fveq1 a = S a 2 nd 2 nd A 𝑔 B = S 2 nd 2 nd A 𝑔 B
33 31 32 eleq12d a = S a 1 st 2 nd A 𝑔 B a 2 nd 2 nd A 𝑔 B S 1 st 2 nd A 𝑔 B S 2 nd 2 nd A 𝑔 B
34 33 elrab S a M ω | a 1 st 2 nd A 𝑔 B a 2 nd 2 nd A 𝑔 B S M ω S 1 st 2 nd A 𝑔 B S 2 nd 2 nd A 𝑔 B
35 30 34 bitrdi M V A ω B ω S E S M ω S 1 st 2 nd A 𝑔 B S 2 nd 2 nd A 𝑔 B
36 17 fveq2d A ω B ω 2 nd A 𝑔 B = 2 nd A B
37 36 fveq2d A ω B ω 1 st 2 nd A 𝑔 B = 1 st 2 nd A B
38 0ex V
39 opex A B V
40 38 39 op2nd 2 nd A B = A B
41 40 fveq2i 1 st 2 nd A B = 1 st A B
42 op1stg A ω B ω 1 st A B = A
43 41 42 syl5eq A ω B ω 1 st 2 nd A B = A
44 37 43 eqtrd A ω B ω 1 st 2 nd A 𝑔 B = A
45 44 fveq2d A ω B ω S 1 st 2 nd A 𝑔 B = S A
46 36 fveq2d A ω B ω 2 nd 2 nd A 𝑔 B = 2 nd 2 nd A B
47 40 fveq2i 2 nd 2 nd A B = 2 nd A B
48 op2ndg A ω B ω 2 nd A B = B
49 47 48 syl5eq A ω B ω 2 nd 2 nd A B = B
50 46 49 eqtrd A ω B ω 2 nd 2 nd A 𝑔 B = B
51 50 fveq2d A ω B ω S 2 nd 2 nd A 𝑔 B = S B
52 45 51 eleq12d A ω B ω S 1 st 2 nd A 𝑔 B S 2 nd 2 nd A 𝑔 B S A S B
53 52 adantl M V A ω B ω S 1 st 2 nd A 𝑔 B S 2 nd 2 nd A 𝑔 B S A S B
54 53 anbi2d M V A ω B ω S M ω S 1 st 2 nd A 𝑔 B S 2 nd 2 nd A 𝑔 B S M ω S A S B
55 35 54 bitrd M V A ω B ω S E S M ω S A S B