Metamath Proof Explorer


Theorem satf

Description: The satisfaction predicate as function over wff codes in the model M and the binary relation E on M . (Contributed by AV, 14-Sep-2023)

Ref Expression
Assertion satf M V E W M Sat E = rec f V f x y | u f v f x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = a M ω | z M i z a ω i 2 nd u x y | i ω j ω x = i 𝑔 j y = a M ω | a i E a j suc ω

Proof

Step Hyp Ref Expression
1 df-sat Sat = m V , e V rec f V f x y | u f v f x = 1 st u 𝑔 1 st v y = m ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = a m ω | z m i z a ω i 2 nd u x y | i ω j ω x = i 𝑔 j y = a m ω | a i e a j suc ω
2 1 a1i M V E W Sat = m V , e V rec f V f x y | u f v f x = 1 st u 𝑔 1 st v y = m ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = a m ω | z m i z a ω i 2 nd u x y | i ω j ω x = i 𝑔 j y = a m ω | a i e a j suc ω
3 oveq1 m = M m ω = M ω
4 3 adantr m = M e = E m ω = M ω
5 4 difeq1d m = M e = E m ω 2 nd u 2 nd v = M ω 2 nd u 2 nd v
6 5 eqeq2d m = M e = E y = m ω 2 nd u 2 nd v y = M ω 2 nd u 2 nd v
7 6 anbi2d m = M e = E x = 1 st u 𝑔 1 st v y = m ω 2 nd u 2 nd v x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v
8 7 rexbidv m = M e = E v f x = 1 st u 𝑔 1 st v y = m ω 2 nd u 2 nd v v f x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v
9 simpl m = M e = E m = M
10 9 raleqdv m = M e = E z m i z a ω i 2 nd u z M i z a ω i 2 nd u
11 4 10 rabeqbidv m = M e = E a m ω | z m i z a ω i 2 nd u = a M ω | z M i z a ω i 2 nd u
12 11 eqeq2d m = M e = E y = a m ω | z m i z a ω i 2 nd u y = a M ω | z M i z a ω i 2 nd u
13 12 anbi2d m = M e = E x = 𝑔 i 1 st u y = a m ω | z m i z a ω i 2 nd u x = 𝑔 i 1 st u y = a M ω | z M i z a ω i 2 nd u
14 13 rexbidv m = M e = E i ω x = 𝑔 i 1 st u y = a m ω | z m i z a ω i 2 nd u i ω x = 𝑔 i 1 st u y = a M ω | z M i z a ω i 2 nd u
15 8 14 orbi12d m = M e = E v f x = 1 st u 𝑔 1 st v y = m ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = a m ω | z m i z a ω i 2 nd u v f x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = a M ω | z M i z a ω i 2 nd u
16 15 rexbidv m = M e = E u f v f x = 1 st u 𝑔 1 st v y = m ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = a m ω | z m i z a ω i 2 nd u u f v f x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = a M ω | z M i z a ω i 2 nd u
17 16 opabbidv m = M e = E x y | u f v f x = 1 st u 𝑔 1 st v y = m ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = a m ω | z m i z a ω i 2 nd u = x y | u f v f x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = a M ω | z M i z a ω i 2 nd u
18 17 uneq2d m = M e = E f x y | u f v f x = 1 st u 𝑔 1 st v y = m ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = a m ω | z m i z a ω i 2 nd u = f x y | u f v f x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = a M ω | z M i z a ω i 2 nd u
19 18 mpteq2dv m = M e = E f V f x y | u f v f x = 1 st u 𝑔 1 st v y = m ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = a m ω | z m i z a ω i 2 nd u = f V f x y | u f v f x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = a M ω | z M i z a ω i 2 nd u
20 breq e = E a i e a j a i E a j
21 20 adantl m = M e = E a i e a j a i E a j
22 4 21 rabeqbidv m = M e = E a m ω | a i e a j = a M ω | a i E a j
23 22 eqeq2d m = M e = E y = a m ω | a i e a j y = a M ω | a i E a j
24 23 anbi2d m = M e = E x = i 𝑔 j y = a m ω | a i e a j x = i 𝑔 j y = a M ω | a i E a j
25 24 2rexbidv m = M e = E i ω j ω x = i 𝑔 j y = a m ω | a i e a j i ω j ω x = i 𝑔 j y = a M ω | a i E a j
26 25 opabbidv m = M e = E x y | i ω j ω x = i 𝑔 j y = a m ω | a i e a j = x y | i ω j ω x = i 𝑔 j y = a M ω | a i E a j
27 rdgeq12 f V f x y | u f v f x = 1 st u 𝑔 1 st v y = m ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = a m ω | z m i z a ω i 2 nd u = f V f x y | u f v f x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = a M ω | z M i z a ω i 2 nd u x y | i ω j ω x = i 𝑔 j y = a m ω | a i e a j = x y | i ω j ω x = i 𝑔 j y = a M ω | a i E a j rec f V f x y | u f v f x = 1 st u 𝑔 1 st v y = m ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = a m ω | z m i z a ω i 2 nd u x y | i ω j ω x = i 𝑔 j y = a m ω | a i e a j = rec f V f x y | u f v f x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = a M ω | z M i z a ω i 2 nd u x y | i ω j ω x = i 𝑔 j y = a M ω | a i E a j
28 19 26 27 syl2anc m = M e = E rec f V f x y | u f v f x = 1 st u 𝑔 1 st v y = m ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = a m ω | z m i z a ω i 2 nd u x y | i ω j ω x = i 𝑔 j y = a m ω | a i e a j = rec f V f x y | u f v f x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = a M ω | z M i z a ω i 2 nd u x y | i ω j ω x = i 𝑔 j y = a M ω | a i E a j
29 28 reseq1d m = M e = E rec f V f x y | u f v f x = 1 st u 𝑔 1 st v y = m ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = a m ω | z m i z a ω i 2 nd u x y | i ω j ω x = i 𝑔 j y = a m ω | a i e a j suc ω = rec f V f x y | u f v f x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = a M ω | z M i z a ω i 2 nd u x y | i ω j ω x = i 𝑔 j y = a M ω | a i E a j suc ω
30 29 adantl M V E W m = M e = E rec f V f x y | u f v f x = 1 st u 𝑔 1 st v y = m ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = a m ω | z m i z a ω i 2 nd u x y | i ω j ω x = i 𝑔 j y = a m ω | a i e a j suc ω = rec f V f x y | u f v f x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = a M ω | z M i z a ω i 2 nd u x y | i ω j ω x = i 𝑔 j y = a M ω | a i E a j suc ω
31 elex M V M V
32 31 adantr M V E W M V
33 elex E W E V
34 33 adantl M V E W E V
35 rdgfun Fun rec f V f x y | u f v f x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = a M ω | z M i z a ω i 2 nd u x y | i ω j ω x = i 𝑔 j y = a M ω | a i E a j
36 omex ω V
37 36 sucex suc ω V
38 37 a1i M V E W suc ω V
39 resfunexg Fun rec f V f x y | u f v f x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = a M ω | z M i z a ω i 2 nd u x y | i ω j ω x = i 𝑔 j y = a M ω | a i E a j suc ω V rec f V f x y | u f v f x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = a M ω | z M i z a ω i 2 nd u x y | i ω j ω x = i 𝑔 j y = a M ω | a i E a j suc ω V
40 35 38 39 sylancr M V E W rec f V f x y | u f v f x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = a M ω | z M i z a ω i 2 nd u x y | i ω j ω x = i 𝑔 j y = a M ω | a i E a j suc ω V
41 2 30 32 34 40 ovmpod M V E W M Sat E = rec f V f x y | u f v f x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = a M ω | z M i z a ω i 2 nd u x y | i ω j ω x = i 𝑔 j y = a M ω | a i E a j suc ω