Metamath Proof Explorer


Theorem satf0sucom

Description: The satisfaction predicate as function over wff codes in the empty model with an empty binary relation at a successor of _om . (Contributed by AV, 14-Sep-2023)

Ref Expression
Assertion satf0sucom N suc ω Sat N = rec f V f x y | y = u f v f x = 1 st u 𝑔 1 st v i ω x = 𝑔 i 1 st u x y | y = i ω j ω x = i 𝑔 j N

Proof

Step Hyp Ref Expression
1 satf0 Sat = rec f V f x y | y = u f v f x = 1 st u 𝑔 1 st v i ω x = 𝑔 i 1 st u x y | y = i ω j ω x = i 𝑔 j suc ω
2 1 fveq1i Sat N = rec f V f x y | y = u f v f x = 1 st u 𝑔 1 st v i ω x = 𝑔 i 1 st u x y | y = i ω j ω x = i 𝑔 j suc ω N
3 fvres N suc ω rec f V f x y | y = u f v f x = 1 st u 𝑔 1 st v i ω x = 𝑔 i 1 st u x y | y = i ω j ω x = i 𝑔 j suc ω N = rec f V f x y | y = u f v f x = 1 st u 𝑔 1 st v i ω x = 𝑔 i 1 st u x y | y = i ω j ω x = i 𝑔 j N
4 2 3 syl5eq N suc ω Sat N = rec f V f x y | y = u f v f x = 1 st u 𝑔 1 st v i ω x = 𝑔 i 1 st u x y | y = i ω j ω x = i 𝑔 j N