Metamath Proof Explorer


Theorem satfbrsuc

Description: The binary relation of a satisfaction predicate as function over wff codes at a successor. (Contributed by AV, 13-Oct-2023)

Ref Expression
Hypotheses satfbrsuc.s S = M Sat E
satfbrsuc.p P = S N
Assertion satfbrsuc M V E W N ω A X B Y A S suc N B A P B u P v P A = 1 st u 𝑔 1 st v B = M ω 2 nd u 2 nd v i ω A = 𝑔 i 1 st u B = f M ω | z M i z f ω i 2 nd u

Proof

Step Hyp Ref Expression
1 satfbrsuc.s S = M Sat E
2 satfbrsuc.p P = S N
3 1 satfvsuc M V E W N ω S suc N = S N x y | u S N v S N x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = f M ω | z M i z f ω i 2 nd u
4 3 3expa M V E W N ω S suc N = S N x y | u S N v S N x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = f M ω | z M i z f ω i 2 nd u
5 4 3adant3 M V E W N ω A X B Y S suc N = S N x y | u S N v S N x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = f M ω | z M i z f ω i 2 nd u
6 5 breqd M V E W N ω A X B Y A S suc N B A S N x y | u S N v S N x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = f M ω | z M i z f ω i 2 nd u B
7 brun A S N x y | u S N v S N x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = f M ω | z M i z f ω i 2 nd u B A S N B A x y | u S N v S N x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = f M ω | z M i z f ω i 2 nd u B
8 2 eqcomi S N = P
9 8 breqi A S N B A P B
10 9 a1i A X B Y A S N B A P B
11 eqeq1 x = A x = 1 st u 𝑔 1 st v A = 1 st u 𝑔 1 st v
12 eqeq1 y = B y = M ω 2 nd u 2 nd v B = M ω 2 nd u 2 nd v
13 11 12 bi2anan9 x = A y = B x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v A = 1 st u 𝑔 1 st v B = M ω 2 nd u 2 nd v
14 13 rexbidv x = A y = B v P x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v v P A = 1 st u 𝑔 1 st v B = M ω 2 nd u 2 nd v
15 eqeq1 x = A x = 𝑔 i 1 st u A = 𝑔 i 1 st u
16 eqeq1 y = B y = f M ω | z M i z f ω i 2 nd u B = f M ω | z M i z f ω i 2 nd u
17 15 16 bi2anan9 x = A y = B x = 𝑔 i 1 st u y = f M ω | z M i z f ω i 2 nd u A = 𝑔 i 1 st u B = f M ω | z M i z f ω i 2 nd u
18 17 rexbidv x = A y = B i ω x = 𝑔 i 1 st u y = f M ω | z M i z f ω i 2 nd u i ω A = 𝑔 i 1 st u B = f M ω | z M i z f ω i 2 nd u
19 14 18 orbi12d x = A y = B v P x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = f M ω | z M i z f ω i 2 nd u v P A = 1 st u 𝑔 1 st v B = M ω 2 nd u 2 nd v i ω A = 𝑔 i 1 st u B = f M ω | z M i z f ω i 2 nd u
20 19 rexbidv x = A y = B u P v P x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = f M ω | z M i z f ω i 2 nd u u P v P A = 1 st u 𝑔 1 st v B = M ω 2 nd u 2 nd v i ω A = 𝑔 i 1 st u B = f M ω | z M i z f ω i 2 nd u
21 8 rexeqi v S N x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v v P x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v
22 21 orbi1i v S N x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = f M ω | z M i z f ω i 2 nd u v P x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = f M ω | z M i z f ω i 2 nd u
23 8 22 rexeqbii u S N v S N x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = f M ω | z M i z f ω i 2 nd u u P v P x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = f M ω | z M i z f ω i 2 nd u
24 23 opabbii x y | u S N v S N x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = f M ω | z M i z f ω i 2 nd u = x y | u P v P x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = f M ω | z M i z f ω i 2 nd u
25 20 24 brabga A X B Y A x y | u S N v S N x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = f M ω | z M i z f ω i 2 nd u B u P v P A = 1 st u 𝑔 1 st v B = M ω 2 nd u 2 nd v i ω A = 𝑔 i 1 st u B = f M ω | z M i z f ω i 2 nd u
26 10 25 orbi12d A X B Y A S N B A x y | u S N v S N x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = f M ω | z M i z f ω i 2 nd u B A P B u P v P A = 1 st u 𝑔 1 st v B = M ω 2 nd u 2 nd v i ω A = 𝑔 i 1 st u B = f M ω | z M i z f ω i 2 nd u
27 7 26 syl5bb A X B Y A S N x y | u S N v S N x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = f M ω | z M i z f ω i 2 nd u B A P B u P v P A = 1 st u 𝑔 1 st v B = M ω 2 nd u 2 nd v i ω A = 𝑔 i 1 st u B = f M ω | z M i z f ω i 2 nd u
28 27 3ad2ant3 M V E W N ω A X B Y A S N x y | u S N v S N x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = f M ω | z M i z f ω i 2 nd u B A P B u P v P A = 1 st u 𝑔 1 st v B = M ω 2 nd u 2 nd v i ω A = 𝑔 i 1 st u B = f M ω | z M i z f ω i 2 nd u
29 6 28 bitrd M V E W N ω A X B Y A S suc N B A P B u P v P A = 1 st u 𝑔 1 st v B = M ω 2 nd u 2 nd v i ω A = 𝑔 i 1 st u B = f M ω | z M i z f ω i 2 nd u