Metamath Proof Explorer


Theorem satff

Description: The satisfaction predicate as function over wff codes in the model M and the binary relation E on M . (Contributed by AV, 28-Oct-2023)

Ref Expression
Assertion satff M V E W N ω M Sat E N : Fmla N 𝒫 M ω

Proof

Step Hyp Ref Expression
1 satffun M V E W N ω Fun M Sat E N
2 satfdmfmla M V E W N ω dom M Sat E N = Fmla N
3 df-fn M Sat E N Fn Fmla N Fun M Sat E N dom M Sat E N = Fmla N
4 1 2 3 sylanbrc M V E W N ω M Sat E N Fn Fmla N
5 satfrnmapom M V E W N ω ran M Sat E N 𝒫 M ω
6 df-f M Sat E N : Fmla N 𝒫 M ω M Sat E N Fn Fmla N ran M Sat E N 𝒫 M ω
7 4 5 6 sylanbrc M V E W N ω M Sat E N : Fmla N 𝒫 M ω