Metamath Proof Explorer


Theorem satffun

Description: The value of the satisfaction predicate as function over wff codes at a natural number is a function. (Contributed by AV, 28-Oct-2023)

Ref Expression
Assertion satffun M V E W N ω Fun M Sat E N

Proof

Step Hyp Ref Expression
1 satfv0fun M V E W Fun M Sat E
2 1 3adant3 M V E W N ω Fun M Sat E
3 fveq2 N = M Sat E N = M Sat E
4 3 funeqd N = Fun M Sat E N Fun M Sat E
5 2 4 syl5ibr N = M V E W N ω Fun M Sat E N
6 df-ne N ¬ N =
7 nnsuc N ω N n ω N = suc n
8 suceq x = suc x = suc
9 8 fveq2d x = M Sat E suc x = M Sat E suc
10 9 funeqd x = Fun M Sat E suc x Fun M Sat E suc
11 10 imbi2d x = M V E W Fun M Sat E suc x M V E W Fun M Sat E suc
12 suceq x = y suc x = suc y
13 12 fveq2d x = y M Sat E suc x = M Sat E suc y
14 13 funeqd x = y Fun M Sat E suc x Fun M Sat E suc y
15 14 imbi2d x = y M V E W Fun M Sat E suc x M V E W Fun M Sat E suc y
16 suceq x = suc y suc x = suc suc y
17 16 fveq2d x = suc y M Sat E suc x = M Sat E suc suc y
18 17 funeqd x = suc y Fun M Sat E suc x Fun M Sat E suc suc y
19 18 imbi2d x = suc y M V E W Fun M Sat E suc x M V E W Fun M Sat E suc suc y
20 suceq x = n suc x = suc n
21 20 fveq2d x = n M Sat E suc x = M Sat E suc n
22 21 funeqd x = n Fun M Sat E suc x Fun M Sat E suc n
23 22 imbi2d x = n M V E W Fun M Sat E suc x M V E W Fun M Sat E suc n
24 satffunlem1 M V E W Fun M Sat E suc
25 pm2.27 M V E W M V E W Fun M Sat E suc y Fun M Sat E suc y
26 satffunlem2 y ω M V E W Fun M Sat E suc y Fun M Sat E suc suc y
27 26 expcom M V E W y ω Fun M Sat E suc y Fun M Sat E suc suc y
28 27 com23 M V E W Fun M Sat E suc y y ω Fun M Sat E suc suc y
29 25 28 syld M V E W M V E W Fun M Sat E suc y y ω Fun M Sat E suc suc y
30 29 com13 y ω M V E W Fun M Sat E suc y M V E W Fun M Sat E suc suc y
31 11 15 19 23 24 30 finds n ω M V E W Fun M Sat E suc n
32 31 adantr n ω N = suc n M V E W Fun M Sat E suc n
33 fveq2 N = suc n M Sat E N = M Sat E suc n
34 33 funeqd N = suc n Fun M Sat E N Fun M Sat E suc n
35 34 imbi2d N = suc n M V E W Fun M Sat E N M V E W Fun M Sat E suc n
36 35 adantl n ω N = suc n M V E W Fun M Sat E N M V E W Fun M Sat E suc n
37 32 36 mpbird n ω N = suc n M V E W Fun M Sat E N
38 37 rexlimiva n ω N = suc n M V E W Fun M Sat E N
39 7 38 syl N ω N M V E W Fun M Sat E N
40 39 expcom N N ω M V E W Fun M Sat E N
41 6 40 sylbir ¬ N = N ω M V E W Fun M Sat E N
42 41 com13 M V E W N ω ¬ N = Fun M Sat E N
43 42 3impia M V E W N ω ¬ N = Fun M Sat E N
44 43 com12 ¬ N = M V E W N ω Fun M Sat E N
45 5 44 pm2.61i M V E W N ω Fun M Sat E N