Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Mario Carneiro
Godel-sets of formulas - part 1
satffunlem1
Next ⟩
satffunlem2
Metamath Proof Explorer
Ascii
Unicode
Theorem
satffunlem1
Description:
Lemma 1 for
satffun
: induction basis.
(Contributed by
AV
, 28-Oct-2023)
Ref
Expression
Assertion
satffunlem1
⊢
M
∈
V
∧
E
∈
W
→
Fun
⁡
M
Sat
E
⁡
suc
⁡
∅
Proof
Step
Hyp
Ref
Expression
1
satfv0fun
⊢
M
∈
V
∧
E
∈
W
→
Fun
⁡
M
Sat
E
⁡
∅
2
satffunlem1lem1
⊢
Fun
⁡
M
Sat
E
⁡
∅
→
Fun
⁡
x
y
|
∃
u
∈
M
Sat
E
⁡
∅
∃
v
∈
M
Sat
E
⁡
∅
x
=
1
st
⁡
u
⊼
𝑔
1
st
⁡
v
∧
y
=
M
ω
∖
2
nd
⁡
u
∩
2
nd
⁡
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
⁡
u
∧
y
=
f
∈
M
ω
|
∀
j
∈
M
i
j
∪
f
↾
ω
∖
i
∈
2
nd
⁡
u
3
1
2
syl
⊢
M
∈
V
∧
E
∈
W
→
Fun
⁡
x
y
|
∃
u
∈
M
Sat
E
⁡
∅
∃
v
∈
M
Sat
E
⁡
∅
x
=
1
st
⁡
u
⊼
𝑔
1
st
⁡
v
∧
y
=
M
ω
∖
2
nd
⁡
u
∩
2
nd
⁡
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
⁡
u
∧
y
=
f
∈
M
ω
|
∀
j
∈
M
i
j
∪
f
↾
ω
∖
i
∈
2
nd
⁡
u
4
satffunlem1lem2
⊢
M
∈
V
∧
E
∈
W
→
dom
⁡
M
Sat
E
⁡
∅
∩
dom
⁡
x
y
|
∃
u
∈
M
Sat
E
⁡
∅
∃
v
∈
M
Sat
E
⁡
∅
x
=
1
st
⁡
u
⊼
𝑔
1
st
⁡
v
∧
y
=
M
ω
∖
2
nd
⁡
u
∩
2
nd
⁡
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
⁡
u
∧
y
=
f
∈
M
ω
|
∀
j
∈
M
i
j
∪
f
↾
ω
∖
i
∈
2
nd
⁡
u
=
∅
5
funun
⊢
Fun
⁡
M
Sat
E
⁡
∅
∧
Fun
⁡
x
y
|
∃
u
∈
M
Sat
E
⁡
∅
∃
v
∈
M
Sat
E
⁡
∅
x
=
1
st
⁡
u
⊼
𝑔
1
st
⁡
v
∧
y
=
M
ω
∖
2
nd
⁡
u
∩
2
nd
⁡
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
⁡
u
∧
y
=
f
∈
M
ω
|
∀
j
∈
M
i
j
∪
f
↾
ω
∖
i
∈
2
nd
⁡
u
∧
dom
⁡
M
Sat
E
⁡
∅
∩
dom
⁡
x
y
|
∃
u
∈
M
Sat
E
⁡
∅
∃
v
∈
M
Sat
E
⁡
∅
x
=
1
st
⁡
u
⊼
𝑔
1
st
⁡
v
∧
y
=
M
ω
∖
2
nd
⁡
u
∩
2
nd
⁡
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
⁡
u
∧
y
=
f
∈
M
ω
|
∀
j
∈
M
i
j
∪
f
↾
ω
∖
i
∈
2
nd
⁡
u
=
∅
→
Fun
⁡
M
Sat
E
⁡
∅
∪
x
y
|
∃
u
∈
M
Sat
E
⁡
∅
∃
v
∈
M
Sat
E
⁡
∅
x
=
1
st
⁡
u
⊼
𝑔
1
st
⁡
v
∧
y
=
M
ω
∖
2
nd
⁡
u
∩
2
nd
⁡
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
⁡
u
∧
y
=
f
∈
M
ω
|
∀
j
∈
M
i
j
∪
f
↾
ω
∖
i
∈
2
nd
⁡
u
6
1
3
4
5
syl21anc
⊢
M
∈
V
∧
E
∈
W
→
Fun
⁡
M
Sat
E
⁡
∅
∪
x
y
|
∃
u
∈
M
Sat
E
⁡
∅
∃
v
∈
M
Sat
E
⁡
∅
x
=
1
st
⁡
u
⊼
𝑔
1
st
⁡
v
∧
y
=
M
ω
∖
2
nd
⁡
u
∩
2
nd
⁡
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
⁡
u
∧
y
=
f
∈
M
ω
|
∀
j
∈
M
i
j
∪
f
↾
ω
∖
i
∈
2
nd
⁡
u
7
peano1
⊢
∅
∈
ω
8
eqid
⊢
M
Sat
E
=
M
Sat
E
9
8
satfvsuc
⊢
M
∈
V
∧
E
∈
W
∧
∅
∈
ω
→
M
Sat
E
⁡
suc
⁡
∅
=
M
Sat
E
⁡
∅
∪
x
y
|
∃
u
∈
M
Sat
E
⁡
∅
∃
v
∈
M
Sat
E
⁡
∅
x
=
1
st
⁡
u
⊼
𝑔
1
st
⁡
v
∧
y
=
M
ω
∖
2
nd
⁡
u
∩
2
nd
⁡
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
⁡
u
∧
y
=
f
∈
M
ω
|
∀
j
∈
M
i
j
∪
f
↾
ω
∖
i
∈
2
nd
⁡
u
10
7
9
mp3an3
⊢
M
∈
V
∧
E
∈
W
→
M
Sat
E
⁡
suc
⁡
∅
=
M
Sat
E
⁡
∅
∪
x
y
|
∃
u
∈
M
Sat
E
⁡
∅
∃
v
∈
M
Sat
E
⁡
∅
x
=
1
st
⁡
u
⊼
𝑔
1
st
⁡
v
∧
y
=
M
ω
∖
2
nd
⁡
u
∩
2
nd
⁡
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
⁡
u
∧
y
=
f
∈
M
ω
|
∀
j
∈
M
i
j
∪
f
↾
ω
∖
i
∈
2
nd
⁡
u
11
10
funeqd
⊢
M
∈
V
∧
E
∈
W
→
Fun
⁡
M
Sat
E
⁡
suc
⁡
∅
↔
Fun
⁡
M
Sat
E
⁡
∅
∪
x
y
|
∃
u
∈
M
Sat
E
⁡
∅
∃
v
∈
M
Sat
E
⁡
∅
x
=
1
st
⁡
u
⊼
𝑔
1
st
⁡
v
∧
y
=
M
ω
∖
2
nd
⁡
u
∩
2
nd
⁡
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
⁡
u
∧
y
=
f
∈
M
ω
|
∀
j
∈
M
i
j
∪
f
↾
ω
∖
i
∈
2
nd
⁡
u
12
6
11
mpbird
⊢
M
∈
V
∧
E
∈
W
→
Fun
⁡
M
Sat
E
⁡
suc
⁡
∅