Metamath Proof Explorer


Theorem satffunlem2

Description: Lemma 2 for satffun : induction step. (Contributed by AV, 28-Oct-2023)

Ref Expression
Assertion satffunlem2 N ω M V E W Fun M Sat E suc N Fun M Sat E suc suc N

Proof

Step Hyp Ref Expression
1 simpr N ω M V E W Fun M Sat E suc N Fun M Sat E suc N
2 simpr N ω M V E W M V E W
3 peano2 N ω suc N ω
4 3 ancri N ω suc N ω N ω
5 4 adantr N ω M V E W suc N ω N ω
6 sssucid N suc N
7 6 a1i N ω M V E W N suc N
8 eqid M Sat E = M Sat E
9 8 satfsschain M V E W suc N ω N ω N suc N M Sat E N M Sat E suc N
10 9 imp M V E W suc N ω N ω N suc N M Sat E N M Sat E suc N
11 2 5 7 10 syl21anc N ω M V E W M Sat E N M Sat E suc N
12 eqid M ω 2 nd u 2 nd v = M ω 2 nd u 2 nd v
13 eqid f M ω | j M i j f ω i 2 nd u = f M ω | j M i j f ω i 2 nd u
14 8 12 13 satffunlem2lem1 Fun M Sat E suc N M Sat E N M Sat E suc N Fun x y | u M Sat E suc N M Sat E N v M Sat E suc N x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = f M ω | j M i j f ω i 2 nd u u M Sat E N v M Sat E suc N M Sat E N x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v
15 14 expcom M Sat E N M Sat E suc N Fun M Sat E suc N Fun x y | u M Sat E suc N M Sat E N v M Sat E suc N x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = f M ω | j M i j f ω i 2 nd u u M Sat E N v M Sat E suc N M Sat E N x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v
16 11 15 syl N ω M V E W Fun M Sat E suc N Fun x y | u M Sat E suc N M Sat E N v M Sat E suc N x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = f M ω | j M i j f ω i 2 nd u u M Sat E N v M Sat E suc N M Sat E N x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v
17 16 imp N ω M V E W Fun M Sat E suc N Fun x y | u M Sat E suc N M Sat E N v M Sat E suc N x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = f M ω | j M i j f ω i 2 nd u u M Sat E N v M Sat E suc N M Sat E N x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v
18 8 12 13 satffunlem2lem2 N ω M V E W Fun M Sat E suc N dom M Sat E suc N dom x y | u M Sat E suc N M Sat E N v M Sat E suc N x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = f M ω | j M i j f ω i 2 nd u u M Sat E N v M Sat E suc N M Sat E N x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v =
19 funun Fun M Sat E suc N Fun x y | u M Sat E suc N M Sat E N v M Sat E suc N x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = f M ω | j M i j f ω i 2 nd u u M Sat E N v M Sat E suc N M Sat E N x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v dom M Sat E suc N dom x y | u M Sat E suc N M Sat E N v M Sat E suc N x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = f M ω | j M i j f ω i 2 nd u u M Sat E N v M Sat E suc N M Sat E N x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v = Fun M Sat E suc N x y | u M Sat E suc N M Sat E N v M Sat E suc N x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = f M ω | j M i j f ω i 2 nd u u M Sat E N v M Sat E suc N M Sat E N x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v
20 1 17 18 19 syl21anc N ω M V E W Fun M Sat E suc N Fun M Sat E suc N x y | u M Sat E suc N M Sat E N v M Sat E suc N x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = f M ω | j M i j f ω i 2 nd u u M Sat E N v M Sat E suc N M Sat E N x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v
21 simpl M V E W M V
22 simpr M V E W E W
23 simpl N ω M V E W N ω
24 8 12 13 satfvsucsuc M V E W N ω M Sat E suc suc N = M Sat E suc N x y | u M Sat E suc N M Sat E N v M Sat E suc N x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = f M ω | j M i j f ω i 2 nd u u M Sat E N v M Sat E suc N M Sat E N x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v
25 21 22 23 24 syl2an23an N ω M V E W M Sat E suc suc N = M Sat E suc N x y | u M Sat E suc N M Sat E N v M Sat E suc N x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = f M ω | j M i j f ω i 2 nd u u M Sat E N v M Sat E suc N M Sat E N x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v
26 25 funeqd N ω M V E W Fun M Sat E suc suc N Fun M Sat E suc N x y | u M Sat E suc N M Sat E N v M Sat E suc N x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = f M ω | j M i j f ω i 2 nd u u M Sat E N v M Sat E suc N M Sat E N x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v
27 26 adantr N ω M V E W Fun M Sat E suc N Fun M Sat E suc suc N Fun M Sat E suc N x y | u M Sat E suc N M Sat E N v M Sat E suc N x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = f M ω | j M i j f ω i 2 nd u u M Sat E N v M Sat E suc N M Sat E N x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v
28 20 27 mpbird N ω M V E W Fun M Sat E suc N Fun M Sat E suc suc N
29 28 ex N ω M V E W Fun M Sat E suc N Fun M Sat E suc suc N