Metamath Proof Explorer


Theorem satfv0fun

Description: The value of the satisfaction predicate as function over wff codes at (/) is a function. (Contributed by AV, 15-Oct-2023)

Ref Expression
Assertion satfv0fun M V E W Fun M Sat E

Proof

Step Hyp Ref Expression
1 funopab Fun x y | i ω j ω x = i 𝑔 j y = f M ω | f i E f j x * y i ω j ω x = i 𝑔 j y = f M ω | f i E f j
2 oveq1 i = k i 𝑔 j = k 𝑔 j
3 2 eqeq2d i = k x = i 𝑔 j x = k 𝑔 j
4 fveq2 i = k f i = f k
5 4 breq1d i = k f i E f j f k E f j
6 5 rabbidv i = k f M ω | f i E f j = f M ω | f k E f j
7 6 eqeq2d i = k y = f M ω | f i E f j y = f M ω | f k E f j
8 3 7 anbi12d i = k x = i 𝑔 j y = f M ω | f i E f j x = k 𝑔 j y = f M ω | f k E f j
9 oveq2 j = l k 𝑔 j = k 𝑔 l
10 9 eqeq2d j = l x = k 𝑔 j x = k 𝑔 l
11 fveq2 j = l f j = f l
12 11 breq2d j = l f k E f j f k E f l
13 12 rabbidv j = l f M ω | f k E f j = f M ω | f k E f l
14 13 eqeq2d j = l y = f M ω | f k E f j y = f M ω | f k E f l
15 10 14 anbi12d j = l x = k 𝑔 j y = f M ω | f k E f j x = k 𝑔 l y = f M ω | f k E f l
16 8 15 cbvrex2vw i ω j ω x = i 𝑔 j y = f M ω | f i E f j k ω l ω x = k 𝑔 l y = f M ω | f k E f l
17 eqtr2 x = i 𝑔 j x = k 𝑔 l i 𝑔 j = k 𝑔 l
18 goeleq12bg k ω l ω i ω j ω i 𝑔 j = k 𝑔 l i = k j = l
19 4 adantr i = k j = l f i = f k
20 19 eqcomd i = k j = l f k = f i
21 11 adantl i = k j = l f j = f l
22 21 eqcomd i = k j = l f l = f j
23 20 22 breq12d i = k j = l f k E f l f i E f j
24 23 rabbidv i = k j = l f M ω | f k E f l = f M ω | f i E f j
25 eqeq12 y = f M ω | f k E f l z = f M ω | f i E f j y = z f M ω | f k E f l = f M ω | f i E f j
26 24 25 syl5ibrcom i = k j = l y = f M ω | f k E f l z = f M ω | f i E f j y = z
27 26 expd i = k j = l y = f M ω | f k E f l z = f M ω | f i E f j y = z
28 18 27 syl6bi k ω l ω i ω j ω i 𝑔 j = k 𝑔 l y = f M ω | f k E f l z = f M ω | f i E f j y = z
29 17 28 syl5 k ω l ω i ω j ω x = i 𝑔 j x = k 𝑔 l y = f M ω | f k E f l z = f M ω | f i E f j y = z
30 29 expd k ω l ω i ω j ω x = i 𝑔 j x = k 𝑔 l y = f M ω | f k E f l z = f M ω | f i E f j y = z
31 30 imp4a k ω l ω i ω j ω x = i 𝑔 j x = k 𝑔 l y = f M ω | f k E f l z = f M ω | f i E f j y = z
32 31 com34 k ω l ω i ω j ω x = i 𝑔 j z = f M ω | f i E f j x = k 𝑔 l y = f M ω | f k E f l y = z
33 32 impd k ω l ω i ω j ω x = i 𝑔 j z = f M ω | f i E f j x = k 𝑔 l y = f M ω | f k E f l y = z
34 33 rexlimdvva k ω l ω i ω j ω x = i 𝑔 j z = f M ω | f i E f j x = k 𝑔 l y = f M ω | f k E f l y = z
35 34 com23 k ω l ω x = k 𝑔 l y = f M ω | f k E f l i ω j ω x = i 𝑔 j z = f M ω | f i E f j y = z
36 35 rexlimivv k ω l ω x = k 𝑔 l y = f M ω | f k E f l i ω j ω x = i 𝑔 j z = f M ω | f i E f j y = z
37 16 36 sylbi i ω j ω x = i 𝑔 j y = f M ω | f i E f j i ω j ω x = i 𝑔 j z = f M ω | f i E f j y = z
38 37 imp i ω j ω x = i 𝑔 j y = f M ω | f i E f j i ω j ω x = i 𝑔 j z = f M ω | f i E f j y = z
39 38 gen2 y z i ω j ω x = i 𝑔 j y = f M ω | f i E f j i ω j ω x = i 𝑔 j z = f M ω | f i E f j y = z
40 eqeq1 y = z y = f M ω | f i E f j z = f M ω | f i E f j
41 40 anbi2d y = z x = i 𝑔 j y = f M ω | f i E f j x = i 𝑔 j z = f M ω | f i E f j
42 41 2rexbidv y = z i ω j ω x = i 𝑔 j y = f M ω | f i E f j i ω j ω x = i 𝑔 j z = f M ω | f i E f j
43 42 mo4 * y i ω j ω x = i 𝑔 j y = f M ω | f i E f j y z i ω j ω x = i 𝑔 j y = f M ω | f i E f j i ω j ω x = i 𝑔 j z = f M ω | f i E f j y = z
44 39 43 mpbir * y i ω j ω x = i 𝑔 j y = f M ω | f i E f j
45 1 44 mpgbir Fun x y | i ω j ω x = i 𝑔 j y = f M ω | f i E f j
46 eqid M Sat E = M Sat E
47 46 satfv0 M V E W M Sat E = x y | i ω j ω x = i 𝑔 j y = f M ω | f i E f j
48 47 funeqd M V E W Fun M Sat E Fun x y | i ω j ω x = i 𝑔 j y = f M ω | f i E f j
49 45 48 mpbiri M V E W Fun M Sat E