Step |
Hyp |
Ref |
Expression |
1 |
|
satfv0fv.s |
|
2 |
|
satfv0fun |
|
3 |
1
|
fveq1i |
|
4 |
3
|
funeqi |
|
5 |
2 4
|
sylibr |
|
6 |
5
|
3adant3 |
|
7 |
|
fmla0 |
|
8 |
7
|
eleq2i |
|
9 |
|
eqeq1 |
|
10 |
9
|
2rexbidv |
|
11 |
10
|
elrab |
|
12 |
8 11
|
bitri |
|
13 |
|
simpr |
|
14 |
|
goel |
|
15 |
14
|
eqeq2d |
|
16 |
|
2fveq3 |
|
17 |
|
0ex |
|
18 |
|
opex |
|
19 |
17 18
|
op2nd |
|
20 |
19
|
fveq2i |
|
21 |
|
vex |
|
22 |
|
vex |
|
23 |
21 22
|
op1st |
|
24 |
20 23
|
eqtri |
|
25 |
16 24
|
eqtrdi |
|
26 |
25
|
fveq2d |
|
27 |
|
2fveq3 |
|
28 |
19
|
fveq2i |
|
29 |
21 22
|
op2nd |
|
30 |
28 29
|
eqtri |
|
31 |
27 30
|
eqtrdi |
|
32 |
31
|
fveq2d |
|
33 |
26 32
|
breq12d |
|
34 |
15 33
|
syl6bi |
|
35 |
34
|
imp |
|
36 |
35
|
rabbidv |
|
37 |
13 36
|
jca |
|
38 |
37
|
ex |
|
39 |
38
|
reximdva |
|
40 |
39
|
reximia |
|
41 |
12 40
|
simplbiim |
|
42 |
41
|
3ad2ant3 |
|
43 |
|
simp3 |
|
44 |
|
ovex |
|
45 |
44
|
rabex |
|
46 |
|
eqeq1 |
|
47 |
9 46
|
bi2anan9 |
|
48 |
47
|
2rexbidv |
|
49 |
48
|
opelopabga |
|
50 |
43 45 49
|
sylancl |
|
51 |
42 50
|
mpbird |
|
52 |
1
|
satfv0 |
|
53 |
52
|
eleq2d |
|
54 |
53
|
3adant3 |
|
55 |
51 54
|
mpbird |
|
56 |
|
funopfv |
|
57 |
6 55 56
|
sylc |
|