Step |
Hyp |
Ref |
Expression |
1 |
|
satfv1.s |
|
2 |
|
df-1o |
|
3 |
2
|
fveq2i |
|
4 |
3
|
a1i |
|
5 |
|
peano1 |
|
6 |
1
|
satfvsuc |
|
7 |
5 6
|
mp3an3 |
|
8 |
1
|
satfv0 |
|
9 |
8
|
rexeqdv |
|
10 |
|
eqid |
|
11 |
|
vex |
|
12 |
|
vex |
|
13 |
11 12
|
op1std |
|
14 |
13
|
oveq1d |
|
15 |
14
|
eqeq2d |
|
16 |
11 12
|
op2ndd |
|
17 |
16
|
ineq1d |
|
18 |
17
|
difeq2d |
|
19 |
18
|
eqeq2d |
|
20 |
15 19
|
anbi12d |
|
21 |
20
|
rexbidv |
|
22 |
|
eqidd |
|
23 |
22 13
|
goaleq12d |
|
24 |
23
|
eqeq2d |
|
25 |
16
|
eleq2d |
|
26 |
25
|
ralbidv |
|
27 |
26
|
rabbidv |
|
28 |
27
|
eqeq2d |
|
29 |
24 28
|
anbi12d |
|
30 |
29
|
rexbidv |
|
31 |
21 30
|
orbi12d |
|
32 |
10 31
|
rexopabb |
|
33 |
9 32
|
bitrdi |
|
34 |
1
|
satfv0 |
|
35 |
34
|
rexeqdv |
|
36 |
|
eqid |
|
37 |
|
vex |
|
38 |
|
vex |
|
39 |
37 38
|
op1std |
|
40 |
39
|
oveq2d |
|
41 |
40
|
eqeq2d |
|
42 |
37 38
|
op2ndd |
|
43 |
42
|
ineq2d |
|
44 |
43
|
difeq2d |
|
45 |
44
|
eqeq2d |
|
46 |
41 45
|
anbi12d |
|
47 |
36 46
|
rexopabb |
|
48 |
35 47
|
bitrdi |
|
49 |
48
|
orbi1d |
|
50 |
49
|
anbi2d |
|
51 |
50
|
2exbidv |
|
52 |
|
r19.41vv |
|
53 |
|
oveq1 |
|
54 |
53
|
eqeq2d |
|
55 |
|
ineq1 |
|
56 |
55
|
difeq2d |
|
57 |
56
|
eqeq2d |
|
58 |
54 57
|
bi2anan9 |
|
59 |
58
|
anbi2d |
|
60 |
59
|
2exbidv |
|
61 |
|
eqidd |
|
62 |
|
id |
|
63 |
61 62
|
goaleq12d |
|
64 |
63
|
eqeq2d |
|
65 |
|
nfrab1 |
|
66 |
65
|
nfeq2 |
|
67 |
|
eleq2 |
|
68 |
67
|
ralbidv |
|
69 |
66 68
|
rabbid |
|
70 |
69
|
eqeq2d |
|
71 |
64 70
|
bi2anan9 |
|
72 |
71
|
rexbidv |
|
73 |
60 72
|
orbi12d |
|
74 |
73
|
adantl |
|
75 |
|
r19.41vv |
|
76 |
|
oveq2 |
|
77 |
76
|
adantr |
|
78 |
77
|
eqeq2d |
|
79 |
|
ineq2 |
|
80 |
79
|
difeq2d |
|
81 |
|
inrab |
|
82 |
81
|
difeq2i |
|
83 |
|
notrab |
|
84 |
|
ianor |
|
85 |
84
|
rabbii |
|
86 |
82 83 85
|
3eqtri |
|
87 |
80 86
|
eqtrdi |
|
88 |
87
|
eqeq2d |
|
89 |
88
|
adantl |
|
90 |
78 89
|
anbi12d |
|
91 |
90
|
biimpa |
|
92 |
91
|
reximi |
|
93 |
92
|
reximi |
|
94 |
75 93
|
sylbir |
|
95 |
94
|
exlimivv |
|
96 |
95
|
a1i |
|
97 |
|
simpr |
|
98 |
|
simpll |
|
99 |
|
simplr |
|
100 |
|
fveq1 |
|
101 |
|
fveq1 |
|
102 |
100 101
|
breq12d |
|
103 |
102
|
cbvrabv |
|
104 |
103
|
eleq2i |
|
105 |
104
|
ralbii |
|
106 |
105
|
rabbii |
|
107 |
|
satfv1lem |
|
108 |
106 107
|
syl5eq |
|
109 |
97 98 99 108
|
syl3anc |
|
110 |
109
|
eqeq2d |
|
111 |
110
|
biimpd |
|
112 |
111
|
anim2d |
|
113 |
112
|
reximdva |
|
114 |
113
|
adantr |
|
115 |
96 114
|
orim12d |
|
116 |
74 115
|
sylbid |
|
117 |
116
|
expimpd |
|
118 |
117
|
reximdva |
|
119 |
118
|
reximia |
|
120 |
52 119
|
sylbir |
|
121 |
120
|
exlimivv |
|
122 |
|
ovex |
|
123 |
|
ovex |
|
124 |
123
|
rabex |
|
125 |
122 124
|
pm3.2i |
|
126 |
|
eqid |
|
127 |
|
eqid |
|
128 |
126 127
|
pm3.2i |
|
129 |
86
|
eqcomi |
|
130 |
129
|
eqeq2i |
|
131 |
130
|
biimpi |
|
132 |
131
|
anim2i |
|
133 |
|
ovex |
|
134 |
123
|
rabex |
|
135 |
|
eqeq1 |
|
136 |
|
eqeq1 |
|
137 |
135 136
|
bi2anan9 |
|
138 |
76
|
eqeq2d |
|
139 |
80
|
eqeq2d |
|
140 |
138 139
|
bi2anan9 |
|
141 |
137 140
|
anbi12d |
|
142 |
133 134 141
|
spc2ev |
|
143 |
128 132 142
|
sylancr |
|
144 |
143
|
reximi |
|
145 |
144
|
reximi |
|
146 |
75
|
bicomi |
|
147 |
146
|
2exbii |
|
148 |
|
2ex2rexrot |
|
149 |
147 148
|
bitri |
|
150 |
145 149
|
sylibr |
|
151 |
150
|
a1i |
|
152 |
109
|
eqcomd |
|
153 |
152
|
eqeq2d |
|
154 |
153
|
biimpd |
|
155 |
154
|
anim2d |
|
156 |
155
|
reximdva |
|
157 |
151 156
|
orim12d |
|
158 |
157
|
imp |
|
159 |
|
eqid |
|
160 |
|
eqid |
|
161 |
159 160
|
pm3.2i |
|
162 |
158 161
|
jctil |
|
163 |
|
eqeq1 |
|
164 |
|
eqeq1 |
|
165 |
163 164
|
bi2anan9 |
|
166 |
165 73
|
anbi12d |
|
167 |
166
|
spc2egv |
|
168 |
125 162 167
|
mpsyl |
|
169 |
168
|
ex |
|
170 |
169
|
reximdva |
|
171 |
170
|
reximia |
|
172 |
52
|
bicomi |
|
173 |
172
|
2exbii |
|
174 |
|
2ex2rexrot |
|
175 |
173 174
|
bitri |
|
176 |
171 175
|
sylibr |
|
177 |
121 176
|
impbii |
|
178 |
51 177
|
bitrdi |
|
179 |
33 178
|
bitrd |
|
180 |
179
|
opabbidv |
|
181 |
180
|
uneq2d |
|
182 |
4 7 181
|
3eqtrd |
|