Metamath Proof Explorer


Theorem satfv1lem

Description: Lemma for satfv1 . (Contributed by AV, 9-Nov-2023)

Ref Expression
Assertion satfv1lem N ω I ω J ω a M ω | z M N z a ω N b M ω | b I E b J = a M ω | z M if- I = N if- J = N z E z z E a J if- J = N a I E z a I E a J

Proof

Step Hyp Ref Expression
1 fveq1 b = N z a ω N b I = N z a ω N I
2 fveq1 b = N z a ω N b J = N z a ω N J
3 1 2 breq12d b = N z a ω N b I E b J N z a ω N I E N z a ω N J
4 3 elrab N z a ω N b M ω | b I E b J N z a ω N M ω N z a ω N I E N z a ω N J
5 4 a1i N ω I ω J ω a M ω z M N z a ω N b M ω | b I E b J N z a ω N M ω N z a ω N I E N z a ω N J
6 elex N ω N V
7 6 3ad2ant1 N ω I ω J ω N V
8 7 ad2antrr N ω I ω J ω a M ω z M N V
9 simpr N ω I ω J ω a M ω z M z M
10 8 9 fsnd N ω I ω J ω a M ω z M N z : N M
11 elmapex a M ω M V ω V
12 11 simpld a M ω M V
13 12 adantr a M ω z M M V
14 snex N V
15 14 a1i a M ω z M N V
16 13 15 elmapd a M ω z M N z M N N z : N M
17 16 adantll N ω I ω J ω a M ω z M N z M N N z : N M
18 10 17 mpbird N ω I ω J ω a M ω z M N z M N
19 elmapi a M ω a : ω M
20 difssd a M ω ω N ω
21 19 20 fssresd a M ω a ω N : ω N M
22 omex ω V
23 22 difexi ω N V
24 23 a1i a M ω ω N V
25 12 24 elmapd a M ω a ω N M ω N a ω N : ω N M
26 21 25 mpbird a M ω a ω N M ω N
27 26 adantl N ω I ω J ω a M ω a ω N M ω N
28 27 adantr N ω I ω J ω a M ω z M a ω N M ω N
29 res0 N z =
30 res0 a ω N =
31 29 30 eqtr4i N z = a ω N
32 disjdif N ω N =
33 32 reseq2i N z N ω N = N z
34 32 reseq2i a ω N N ω N = a ω N
35 31 33 34 3eqtr4i N z N ω N = a ω N N ω N
36 35 a1i N ω I ω J ω a M ω z M N z N ω N = a ω N N ω N
37 elmapresaun N z M N a ω N M ω N N z N ω N = a ω N N ω N N z a ω N M N ω N
38 18 28 36 37 syl3anc N ω I ω J ω a M ω z M N z a ω N M N ω N
39 uncom N ω N = ω N N
40 difsnid N ω ω N N = ω
41 39 40 eqtr2id N ω ω = N ω N
42 41 3ad2ant1 N ω I ω J ω ω = N ω N
43 42 ad2antrr N ω I ω J ω a M ω z M ω = N ω N
44 43 oveq2d N ω I ω J ω a M ω z M M ω = M N ω N
45 38 44 eleqtrrd N ω I ω J ω a M ω z M N z a ω N M ω
46 ibar N z a ω N M ω N z a ω N I E N z a ω N J N z a ω N M ω N z a ω N I E N z a ω N J
47 46 adantl N ω I ω J ω a M ω z M N z a ω N M ω N z a ω N I E N z a ω N J N z a ω N M ω N z a ω N I E N z a ω N J
48 47 bicomd N ω I ω J ω a M ω z M N z a ω N M ω N z a ω N M ω N z a ω N I E N z a ω N J N z a ω N I E N z a ω N J
49 simpll1 N ω I ω J ω a M ω z M N ω
50 eqid N z a ω N = N z a ω N
51 49 9 50 fvsnun1 N ω I ω J ω a M ω z M N z a ω N N = z
52 51 adantr N ω I ω J ω a M ω z M N z a ω N M ω N z a ω N N = z
53 52 52 breq12d N ω I ω J ω a M ω z M N z a ω N M ω N z a ω N N E N z a ω N N z E z
54 53 adantl J = N N ω I ω J ω a M ω z M N z a ω N M ω N z a ω N N E N z a ω N N z E z
55 fveq2 J = N N z a ω N J = N z a ω N N
56 55 breq2d J = N N z a ω N N E N z a ω N J N z a ω N N E N z a ω N N
57 ifptru J = N if- J = N z E z z E a J z E z
58 56 57 bibi12d J = N N z a ω N N E N z a ω N J if- J = N z E z z E a J N z a ω N N E N z a ω N N z E z
59 58 adantr J = N N ω I ω J ω a M ω z M N z a ω N M ω N z a ω N N E N z a ω N J if- J = N z E z z E a J N z a ω N N E N z a ω N N z E z
60 54 59 mpbird J = N N ω I ω J ω a M ω z M N z a ω N M ω N z a ω N N E N z a ω N J if- J = N z E z z E a J
61 52 adantl ¬ J = N N ω I ω J ω a M ω z M N z a ω N M ω N z a ω N N = z
62 49 adantr N ω I ω J ω a M ω z M N z a ω N M ω N ω
63 62 adantl ¬ J = N N ω I ω J ω a M ω z M N z a ω N M ω N ω
64 9 adantr N ω I ω J ω a M ω z M N z a ω N M ω z M
65 64 adantl ¬ J = N N ω I ω J ω a M ω z M N z a ω N M ω z M
66 neqne ¬ J = N J N
67 simpll3 N ω I ω J ω a M ω z M J ω
68 67 adantr N ω I ω J ω a M ω z M N z a ω N M ω J ω
69 66 68 anim12ci ¬ J = N N ω I ω J ω a M ω z M N z a ω N M ω J ω J N
70 eldifsn J ω N J ω J N
71 69 70 sylibr ¬ J = N N ω I ω J ω a M ω z M N z a ω N M ω J ω N
72 63 65 50 71 fvsnun2 ¬ J = N N ω I ω J ω a M ω z M N z a ω N M ω N z a ω N J = a J
73 61 72 breq12d ¬ J = N N ω I ω J ω a M ω z M N z a ω N M ω N z a ω N N E N z a ω N J z E a J
74 ifpfal ¬ J = N if- J = N z E z z E a J z E a J
75 74 bicomd ¬ J = N z E a J if- J = N z E z z E a J
76 75 adantr ¬ J = N N ω I ω J ω a M ω z M N z a ω N M ω z E a J if- J = N z E z z E a J
77 73 76 bitrd ¬ J = N N ω I ω J ω a M ω z M N z a ω N M ω N z a ω N N E N z a ω N J if- J = N z E z z E a J
78 60 77 pm2.61ian N ω I ω J ω a M ω z M N z a ω N M ω N z a ω N N E N z a ω N J if- J = N z E z z E a J
79 78 adantl I = N N ω I ω J ω a M ω z M N z a ω N M ω N z a ω N N E N z a ω N J if- J = N z E z z E a J
80 fveq2 I = N N z a ω N I = N z a ω N N
81 80 breq1d I = N N z a ω N I E N z a ω N J N z a ω N N E N z a ω N J
82 ifptru I = N if- I = N if- J = N z E z z E a J if- J = N a I E z a I E a J if- J = N z E z z E a J
83 81 82 bibi12d I = N N z a ω N I E N z a ω N J if- I = N if- J = N z E z z E a J if- J = N a I E z a I E a J N z a ω N N E N z a ω N J if- J = N z E z z E a J
84 83 adantr I = N N ω I ω J ω a M ω z M N z a ω N M ω N z a ω N I E N z a ω N J if- I = N if- J = N z E z z E a J if- J = N a I E z a I E a J N z a ω N N E N z a ω N J if- J = N z E z z E a J
85 79 84 mpbird I = N N ω I ω J ω a M ω z M N z a ω N M ω N z a ω N I E N z a ω N J if- I = N if- J = N z E z z E a J if- J = N a I E z a I E a J
86 62 adantl ¬ I = N N ω I ω J ω a M ω z M N z a ω N M ω N ω
87 64 adantl ¬ I = N N ω I ω J ω a M ω z M N z a ω N M ω z M
88 neqne ¬ I = N I N
89 simpll2 N ω I ω J ω a M ω z M I ω
90 89 adantr N ω I ω J ω a M ω z M N z a ω N M ω I ω
91 88 90 anim12ci ¬ I = N N ω I ω J ω a M ω z M N z a ω N M ω I ω I N
92 eldifsn I ω N I ω I N
93 91 92 sylibr ¬ I = N N ω I ω J ω a M ω z M N z a ω N M ω I ω N
94 86 87 50 93 fvsnun2 ¬ I = N N ω I ω J ω a M ω z M N z a ω N M ω N z a ω N I = a I
95 52 adantl ¬ I = N N ω I ω J ω a M ω z M N z a ω N M ω N z a ω N N = z
96 94 95 breq12d ¬ I = N N ω I ω J ω a M ω z M N z a ω N M ω N z a ω N I E N z a ω N N a I E z
97 96 adantl J = N ¬ I = N N ω I ω J ω a M ω z M N z a ω N M ω N z a ω N I E N z a ω N N a I E z
98 55 breq2d J = N N z a ω N I E N z a ω N J N z a ω N I E N z a ω N N
99 ifptru J = N if- J = N a I E z a I E a J a I E z
100 98 99 bibi12d J = N N z a ω N I E N z a ω N J if- J = N a I E z a I E a J N z a ω N I E N z a ω N N a I E z
101 100 adantr J = N ¬ I = N N ω I ω J ω a M ω z M N z a ω N M ω N z a ω N I E N z a ω N J if- J = N a I E z a I E a J N z a ω N I E N z a ω N N a I E z
102 97 101 mpbird J = N ¬ I = N N ω I ω J ω a M ω z M N z a ω N M ω N z a ω N I E N z a ω N J if- J = N a I E z a I E a J
103 94 adantl ¬ J = N ¬ I = N N ω I ω J ω a M ω z M N z a ω N M ω N z a ω N I = a I
104 72 adantrl ¬ J = N ¬ I = N N ω I ω J ω a M ω z M N z a ω N M ω N z a ω N J = a J
105 103 104 breq12d ¬ J = N ¬ I = N N ω I ω J ω a M ω z M N z a ω N M ω N z a ω N I E N z a ω N J a I E a J
106 ifpfal ¬ J = N if- J = N a I E z a I E a J a I E a J
107 106 bicomd ¬ J = N a I E a J if- J = N a I E z a I E a J
108 107 adantr ¬ J = N ¬ I = N N ω I ω J ω a M ω z M N z a ω N M ω a I E a J if- J = N a I E z a I E a J
109 105 108 bitrd ¬ J = N ¬ I = N N ω I ω J ω a M ω z M N z a ω N M ω N z a ω N I E N z a ω N J if- J = N a I E z a I E a J
110 102 109 pm2.61ian ¬ I = N N ω I ω J ω a M ω z M N z a ω N M ω N z a ω N I E N z a ω N J if- J = N a I E z a I E a J
111 ifpfal ¬ I = N if- I = N if- J = N z E z z E a J if- J = N a I E z a I E a J if- J = N a I E z a I E a J
112 111 bicomd ¬ I = N if- J = N a I E z a I E a J if- I = N if- J = N z E z z E a J if- J = N a I E z a I E a J
113 112 adantr ¬ I = N N ω I ω J ω a M ω z M N z a ω N M ω if- J = N a I E z a I E a J if- I = N if- J = N z E z z E a J if- J = N a I E z a I E a J
114 110 113 bitrd ¬ I = N N ω I ω J ω a M ω z M N z a ω N M ω N z a ω N I E N z a ω N J if- I = N if- J = N z E z z E a J if- J = N a I E z a I E a J
115 85 114 pm2.61ian N ω I ω J ω a M ω z M N z a ω N M ω N z a ω N I E N z a ω N J if- I = N if- J = N z E z z E a J if- J = N a I E z a I E a J
116 48 115 bitrd N ω I ω J ω a M ω z M N z a ω N M ω N z a ω N M ω N z a ω N I E N z a ω N J if- I = N if- J = N z E z z E a J if- J = N a I E z a I E a J
117 45 116 mpdan N ω I ω J ω a M ω z M N z a ω N M ω N z a ω N I E N z a ω N J if- I = N if- J = N z E z z E a J if- J = N a I E z a I E a J
118 5 117 bitrd N ω I ω J ω a M ω z M N z a ω N b M ω | b I E b J if- I = N if- J = N z E z z E a J if- J = N a I E z a I E a J
119 118 ralbidva N ω I ω J ω a M ω z M N z a ω N b M ω | b I E b J z M if- I = N if- J = N z E z z E a J if- J = N a I E z a I E a J
120 119 rabbidva N ω I ω J ω a M ω | z M N z a ω N b M ω | b I E b J = a M ω | z M if- I = N if- J = N z E z z E a J if- J = N a I E z a I E a J