Metamath Proof Explorer


Theorem satfvsuclem1

Description: Lemma 1 for satfvsuc . (Contributed by AV, 8-Oct-2023)

Ref Expression
Hypothesis satfv0.s S = M Sat E
Assertion satfvsuclem1 M V E W N ω x y | u S N v S N x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = a M ω | z M i z a ω i 2 nd u y 𝒫 M ω V

Proof

Step Hyp Ref Expression
1 satfv0.s S = M Sat E
2 ancom u S N v S N x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = a M ω | z M i z a ω i 2 nd u y 𝒫 M ω y 𝒫 M ω u S N v S N x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = a M ω | z M i z a ω i 2 nd u
3 2 opabbii x y | u S N v S N x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = a M ω | z M i z a ω i 2 nd u y 𝒫 M ω = x y | y 𝒫 M ω u S N v S N x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = a M ω | z M i z a ω i 2 nd u
4 ovex M ω V
5 4 pwex 𝒫 M ω V
6 5 a1i M V E W N ω 𝒫 M ω V
7 fvex S N V
8 unab x | v S N x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v x | i ω x = 𝑔 i 1 st u y = a M ω | z M i z a ω i 2 nd u = x | v S N x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = a M ω | z M i z a ω i 2 nd u
9 7 abrexex x | v S N x = 1 st u 𝑔 1 st v V
10 simpl x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v x = 1 st u 𝑔 1 st v
11 10 reximi v S N x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v v S N x = 1 st u 𝑔 1 st v
12 11 ss2abi x | v S N x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v x | v S N x = 1 st u 𝑔 1 st v
13 9 12 ssexi x | v S N x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v V
14 omex ω V
15 14 abrexex x | i ω x = 𝑔 i 1 st u V
16 simpl x = 𝑔 i 1 st u y = a M ω | z M i z a ω i 2 nd u x = 𝑔 i 1 st u
17 16 reximi i ω x = 𝑔 i 1 st u y = a M ω | z M i z a ω i 2 nd u i ω x = 𝑔 i 1 st u
18 17 ss2abi x | i ω x = 𝑔 i 1 st u y = a M ω | z M i z a ω i 2 nd u x | i ω x = 𝑔 i 1 st u
19 15 18 ssexi x | i ω x = 𝑔 i 1 st u y = a M ω | z M i z a ω i 2 nd u V
20 13 19 unex x | v S N x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v x | i ω x = 𝑔 i 1 st u y = a M ω | z M i z a ω i 2 nd u V
21 8 20 eqeltrri x | v S N x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = a M ω | z M i z a ω i 2 nd u V
22 21 a1i M V E W N ω y 𝒫 M ω u S N x | v S N x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = a M ω | z M i z a ω i 2 nd u V
23 22 ralrimiva M V E W N ω y 𝒫 M ω u S N x | v S N x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = a M ω | z M i z a ω i 2 nd u V
24 abrexex2g S N V u S N x | v S N x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = a M ω | z M i z a ω i 2 nd u V x | u S N v S N x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = a M ω | z M i z a ω i 2 nd u V
25 7 23 24 sylancr M V E W N ω y 𝒫 M ω x | u S N v S N x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = a M ω | z M i z a ω i 2 nd u V
26 6 25 opabex3rd M V E W N ω x y | y 𝒫 M ω u S N v S N x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = a M ω | z M i z a ω i 2 nd u V
27 3 26 eqeltrid M V E W N ω x y | u S N v S N x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = a M ω | z M i z a ω i 2 nd u y 𝒫 M ω V