Metamath Proof Explorer


Theorem sb1

Description: One direction of a simplified definition of substitution. The converse requires either a disjoint variable condition ( sb5 ) or a nonfreeness hypothesis ( sb5f ). Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker sb1v when possible. (Contributed by NM, 13-May-1993) Revise df-sb . (Revised by Wolf Lammen, 21-Feb-2024) (New usage is discouraged.)

Ref Expression
Assertion sb1 y x φ x x = y φ

Proof

Step Hyp Ref Expression
1 spsbe y x φ x φ
2 pm3.2 x = y φ x = y φ
3 2 aleximi x x = y x φ x x = y φ
4 1 3 syl5 x x = y y x φ x x = y φ
5 sb3b ¬ x x = y y x φ x x = y φ
6 5 biimpd ¬ x x = y y x φ x x = y φ
7 4 6 pm2.61i y x φ x x = y φ