Metamath Proof Explorer


Theorem sb1OLD

Description: Obsolete version of sb1 as of 21-Feb-2024. (Contributed by NM, 13-May-1993) Revise df-sb . (Revised by Wolf Lammen, 29-Jul-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion sb1OLD y x φ x x = y φ

Proof

Step Hyp Ref Expression
1 sbequ2 x = y y x φ φ
2 19.8a x = y φ x x = y φ
3 2 ex x = y φ x x = y φ
4 1 3 syld x = y y x φ x x = y φ
5 4 sps x x = y y x φ x x = y φ
6 sb4b ¬ x x = y y x φ x x = y φ
7 equs4 x x = y φ x x = y φ
8 6 7 syl6bi ¬ x x = y y x φ x x = y φ
9 5 8 pm2.61i y x φ x x = y φ