Metamath Proof Explorer


Theorem sb1v

Description: One direction of sb5 , provable from fewer axioms. Version of sb1 with a disjoint variable condition using fewer axioms. (Contributed by NM, 13-May-1993) (Revised by Wolf Lammen, 20-Jan-2024)

Ref Expression
Assertion sb1v y x φ x x = y φ

Proof

Step Hyp Ref Expression
1 sb6 y x φ x x = y φ
2 equs4v x x = y φ x x = y φ
3 1 2 sylbi y x φ x x = y φ