Metamath Proof Explorer


Theorem sb2ae

Description: In the case of two successive substitutions for two always equal variables, the second substitution has no effect. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by BJ and WL, 9-Aug-2023) (New usage is discouraged.)

Ref Expression
Assertion sb2ae x x = y u x v y φ v y φ

Proof

Step Hyp Ref Expression
1 drsb1 x x = y u x v y φ u y v y φ
2 nfs1v y v y φ
3 2 sbf u y v y φ v y φ
4 1 3 bitrdi x x = y u x v y φ v y φ