Metamath Proof Explorer


Theorem sb3bOLD

Description: Obsolete version of sb3b as of 21-Feb-2024. (Contributed by BJ, 6-Oct-2018) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion sb3bOLD ¬ x x = y y x φ x x = y φ

Proof

Step Hyp Ref Expression
1 sb1 y x φ x x = y φ
2 sb3 ¬ x x = y x x = y φ y x φ
3 1 2 impbid2 ¬ x x = y y x φ x x = y φ