Metamath Proof Explorer


Theorem sb4a

Description: A version of one implication of sb4b that does not require a distinctor antecedent. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker sb4av when possible. (Contributed by NM, 2-Feb-2007) Revise df-sb . (Revised by Wolf Lammen, 28-Jul-2023) (New usage is discouraged.)

Ref Expression
Assertion sb4a t x t φ x x = t φ

Proof

Step Hyp Ref Expression
1 sbequ2 x = t t x t φ t φ
2 1 sps x x = t t x t φ t φ
3 axc11r x x = t t φ x φ
4 ala1 x φ x x = t φ
5 3 4 syl6 x x = t t φ x x = t φ
6 2 5 syld x x = t t x t φ x x = t φ
7 sb4b ¬ x x = t t x t φ x x = t t φ
8 sp t φ φ
9 8 imim2i x = t t φ x = t φ
10 9 alimi x x = t t φ x x = t φ
11 7 10 syl6bi ¬ x x = t t x t φ x x = t φ
12 6 11 pm2.61i t x t φ x x = t φ