Metamath Proof Explorer


Theorem sb4e

Description: One direction of a simplified definition of substitution that unlike sb4b does not require a distinctor antecedent. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 2-Feb-2007) (New usage is discouraged.)

Ref Expression
Assertion sb4e y x φ x x = y y φ

Proof

Step Hyp Ref Expression
1 sb1 y x φ x x = y φ
2 equs5e x x = y φ x x = y y φ
3 1 2 syl y x φ x x = y y φ