Metamath Proof Explorer


Theorem sb5rf

Description: Reversed substitution. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 3-Feb-2005) (Revised by Mario Carneiro, 6-Oct-2016) (Proof shortened by Wolf Lammen, 20-Sep-2018) (New usage is discouraged.)

Ref Expression
Hypothesis sb5rf.1 y φ
Assertion sb5rf φ y y = x y x φ

Proof

Step Hyp Ref Expression
1 sb5rf.1 y φ
2 sbequ12r y = x y x φ φ
3 1 2 equsex y y = x y x φ φ
4 3 bicomi φ y y = x y x φ