Metamath Proof Explorer


Theorem sb6a

Description: Equivalence for substitution. (Contributed by NM, 2-Jun-1993) (Proof shortened by Wolf Lammen, 23-Sep-2018)

Ref Expression
Assertion sb6a y x φ x x = y x y φ

Proof

Step Hyp Ref Expression
1 sbcov y x x y φ y x φ
2 sb6 y x x y φ x x = y x y φ
3 1 2 bitr3i y x φ x x = y x y φ