Metamath Proof Explorer


Theorem sb6rf

Description: Reversed substitution. For a version requiring disjoint variables, but fewer axioms, see sb6rfv . Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker sb6rfv if possible. (Contributed by NM, 1-Aug-1993) (Revised by Mario Carneiro, 6-Oct-2016) (Proof shortened by Wolf Lammen, 21-Sep-2018) (New usage is discouraged.)

Ref Expression
Hypothesis sb5rf.1 y φ
Assertion sb6rf φ y y = x y x φ

Proof

Step Hyp Ref Expression
1 sb5rf.1 y φ
2 sbequ12r y = x y x φ φ
3 1 2 equsal y y = x y x φ φ
4 3 bicomi φ y y = x y x φ