Metamath Proof Explorer


Theorem sb6rfv

Description: Reversed substitution. Version of sb6rf requiring disjoint variables, but fewer axioms. (Contributed by NM, 1-Aug-1993) (Revised by Wolf Lammen, 7-Feb-2023)

Ref Expression
Hypothesis sb6rfv.nf y φ
Assertion sb6rfv φ y y = x y x φ

Proof

Step Hyp Ref Expression
1 sb6rfv.nf y φ
2 sbequ12r y = x y x φ φ
3 1 2 equsalv y y = x y x φ φ
4 3 bicomi φ y y = x y x φ